Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)

这是继之前文章:

  • Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (一)

  • Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (二)

的续篇。在今天的文章中,我将详述如何使用 ElasticsearchStore。这也是被推荐的使用方法。如果你还没有设置好自己的环境,请详细阅读第一篇文章。

创建应用并展示

安装包

#!pip3 install langchain

导入包

from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import ElasticsearchStore
from langchain.text_splitter import CharacterTextSplitter
from urllib.request import urlopen
import os, jsonload_dotenv()openai_api_key=os.getenv('OPENAI_API_KEY')
elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")
elastic_index_name='elasticsearch-store'

添加文档并将文档分成段落

with open('workplace-docs.json') as f:workplace_docs = json.load(f)print(f"Successfully loaded {len(workplace_docs)} documents")

metadata = []
content = []for doc in workplace_docs:content.append(doc["content"])metadata.append({"name": doc["name"],"summary": doc["summary"],"rolePermissions":doc["rolePermissions"]})text_splitter = CharacterTextSplitter(chunk_size=50, chunk_overlap=0)
docs = text_splitter.create_documents(content, metadatas=metadata)

把数据写入到 Elasticsearch

from elasticsearch import Elasticsearchembeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)url = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
connection = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)es = ElasticsearchStore.from_documents( docs,embedding = embeddings, es_url = url, es_connection = connection,index_name = elastic_index_name, es_user = elastic_user,es_password = elastic_password)

展示结果

def showResults(output):print("Total results: ", len(output))for index in range(len(output)):print(output[index])

Similarity / Vector Search (Approximate KNN Search) - ApproxRetrievalStrategy()

query = "work from home policy"
result = es.similarity_search(query=query)showResults(result)

Hybrid Search (Approximate KNN + Keyword Search) - ApproxRetrievalStrategy()

我们在 Kibana 的 Dev Tools 里打入如下的命令:

embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)es = ElasticsearchStore(es_url = url,es_connection = connection,es_user=elastic_user,es_password=elastic_password,embedding=embeddings,index_name=elastic_index_name,strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True)
)es.similarity_search("work from home policy")

造成这个错误的原因是因为当前的 License 模式不支持 RRF。我们去 Kibana 启动当前的授权:

我们再次运行代码:

Exact KNN Search (Brute Force) - ExactRetrievalStrategy()

embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)es = ElasticsearchStore(es_url = url,es_connection = connection,es_user=elastic_user,es_password=elastic_password,embedding=embeddings,index_name=elastic_index_name,strategy=ElasticsearchStore.ExactRetrievalStrategy()
)es.similarity_search("work from home policy")

Index / Search Documents using ELSER - SparseVectorRetrievalStrategy()

在这个步骤中,我们需要启动 ELSER。有关 ELSER 的启动,请参阅文章 “Elasticsearch:部署 ELSER - Elastic Learned Sparse EncoderR”。

embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)es = ElasticsearchStore.from_documents(docs,es_url = url,es_connection = connection,es_user=elastic_user,es_password=elastic_password,index_name=elastic_index_name+"-"+"elser",strategy=ElasticsearchStore.SparseVectorRetrievalStrategy()
)es.similarity_search("work from home policy")

在运行完上面的代码后,我们可以在 Kibana 中进行查看所生成的字段:

上面代码的整个 jupyter notebook 可以在地址 https://github.com/liu-xiao-guo/semantic_search_es/blob/main/ElasticsearchStore.ipynb 下载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/173859.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机网络【CN】介质访问控制

信道划分介质访问控制 FDMTDMWDMCDM【掌握eg即可】 随机介质访问控制 CSMA 1-坚持CSMA 非坚持CSMA p-坚持CSMA 空闲时 立即发送数据 立即发送数据 以概率P发送数据,以概率1-p推迟到下一个时隙 忙碌时 继续坚持侦听 放弃侦听,等待一个随机的时…

【大数据Hive】hive 表数据优化使用详解

目录 一、前言 二、hive 常用数据存储格式 2.1 文件格式-TextFile 2.1.1 操作演示 2.2 文件格式 - SequenceFile 2.2.1 操作演示 2.3 文件格式 -Parquet 2.3.1 Parquet简介 2.3.2 操作演示 2.4 文件格式-ORC 2.4.1 ORC介绍 2.4.2 操作演示 三、hive 存储数据压缩优…

基于STM32的示波器信号发生器设计

**单片机设计介绍,基于STM32的示波器信号发生器设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序文档 六、 文章目录 一 概要 基于STM32的示波器信号发生器是一种高性能的电子仪器,用于测试和分析电路中的电信号。在该系统中&a…

知识管理的PSCA循环

前言:在PMP备考第二章《环境》部分,面对项目的复杂性,提到了知识管理的PSDA循环,本篇博客主要谈一下什么是PSDA循环,以及我们面对复杂的环境,如何提升自己的学习能力和认知水平。 目录 知识的冰山模型 P…

【MySQL架构篇】SQL执行流程与缓冲池

文章目录 1. SQL执行流程2. 数据库缓冲池(Buffer Pool)2.1 缓冲池概述2.2 缓冲池如何读取数据2.3 查看和设置缓冲池的大小2.4 多个Buffer Pool实例2.5 引申问题 1. SQL执行流程 查询缓存:因为查询效率往往不高,所以在MySQL8.0之后就抛弃了这个功能解析器…

手机apn介绍

公司遇到一件很棘手的事情,app发版之后,长江以北地方的用户网络信号很好,但是打开app之后网络连接不上,而长江以南的用户网络却很好。大家找了很多资料,提出一些方案: 1、是不是运营商把我们公司的ip给限制…

考点之数据结构

概论 时间复杂度和空间复杂度是计算机科学中用来评估算法性能的重要指标。 时间复杂度: 时间复杂度衡量的是算法运行所需的时间。它表示算法执行所需的基本操作数量随着输入大小的增长而变化的趋势。 求法: 通常通过分析算法中基本操作执行的次数来…

Linux下自动挂载U盘或者USB移动硬盘

最近在折腾用树莓派(实际上是平替香橙派orangepi zero3)搭建共享文件服务器,有一个问题很重要,如何在系统启动时自动挂载USB移动硬盘。 1 使用/etc/fstab 最开始尝试了用/etc/fstab文件下增加:"/dev/sda1 /home/orangepi/s…

YouTube博主数据信息资源

YouTube博主数据信息资源 🔥我是一位拥有10年编程经验的程序猿,为你带来一个全新的优质资源 🔍您是否在寻找最新、最活跃的YouTube博主数据,以助力你的项目、营销或研究? 我们的数据,您的优势:…

网络基础-4

链路聚合技术 根据灵活性地增加网络设备之间的带宽供给增强网络设备之间连接的可靠性节约成本 链路聚合 是将两个或更多数据信道结合成一个单个的信道,该信道以一个单个的更高带宽的逻辑链路出现。链路聚合一般用来连接一个或多个带宽需求大的设备,例…

[毕设记录]@开题调研:一些产品

我感觉产品能代表落地的一些实际应用,会和研究的角度有些差别,但是需求和兴趣往往是从现实中来的,在上一篇blog里面看外国blog的时候顺着搜搜到了很多国外的智慧校园chatbot解决方案 文章目录 Comm100streebomodern campusUniBuddy Comm100 …

arch linux 安装 vsftpd 配置虚拟用户

后面操作会直接基于 yay 操作 自行查找如何安装 yay 公司经常会用到 ftp 服务 不想用 apache 的 ftp server 所以自己在小机器上撞了 arch linux 用来安装软件 跑程序等。 1. 安装 vsftpd yay vsftpd --noconfirm选择 1 安装 输入密码 2. 安装 pam_pwdfile 安装 pam_pwdf…

【数智化人物展】同方有云联合创始人兼总经理江琦:云计算,引领数智化升级的动能...

江琦 本文由同方有云联合创始人兼总经理江琦投递并参与《2023中国企业数智化转型升级先锋人物》榜单/奖项评选。 数据智能产业创新服务媒体 ——聚焦数智 改变商业 在这个飞速发展的数字时代,我们置身于一个前所未有的机遇与挑战并存的时刻。数字化转型不再仅仅是一…

【音视频|PCM】PCM格式详解

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…

共用体开发案例

有若干个人员的数据,其中有学生和教师。学生的数据中包括:姓名、号码性别、职业、班级。教师的数据包括:姓名、号码、性别、职业、职务。要求用同一个表格来处理。 #include <stdio.h>struct Person {char name[32];int age;char zhiYe;char addr[32];union {int class;…

测试时间函数

clock():测试时间函数 测试程序开始运行(即从main开始)到执行当前行需要的时间值,单位毫秒.需要引用time.h 例如&#xff1a;需要需要测试输出0~100需要的时间可以用如下代码&#xff1a; #include<stdio.h> #include<time.h>//单位是毫秒 int main() {clock_t c1…

适用于 Mac 或 Windows 的 4 种最佳 JPEG/PNG图片 恢复软件

您的计算机或外部存储驱动器上很可能有大量 JPEG /PNG图片照片&#xff0c;但不知何故&#xff0c;您意识到一些重要的 JPEG /PNG图片文件丢失或被删除&#xff0c;它们对您来说意义重大&#xff0c;您想要找回它们. 4 种最佳 JPEG/PNG图片 恢复软件 要成功执行 JPEG /PNG图片…

[毕设记录]@开题调研:外文博客搬运整理

搜college chatbot 好像比搜 university chatbot能搜出来的东西更多哈哈 我感觉&#xff0c;AI时代&#xff0c;粗看这种博客比较高效的方式是&#xff0c;用翻译插件迅速概览中文&#xff0c;然后复制给gpt让它总结要点&#xff0c;然后再去看重点部分的原文 文章目录 blog1&a…

视频分辨率/帧率/码率选择参考

1. 视频码率与分辨率的参考表 1080&#xff0a;720的分辨率&#xff0c;用5000K左右&#xff1b; 720&#xff0a;576的分辨率&#xff0c;用3500K左右&#xff1b; 640&#xff0a;480的分辨率&#xff0c;用1500K左右。 2. 计算公式 基本算法&#xff1a;码率&#xff08;kb…

CNCC2023

中国工程院院士&#xff0c;之江实验室主任、阿里云创始人王坚&#xff1a;计算驱动的科学发现和科技创新。 国际计算机学会主席雅尼斯约阿尼迪斯(ACM President Yannis Ioannidis)。 电气和电子工程师协会计算机协会主席妮塔帕特尔(IEEE CS President Nita Patel)。 2022 I…