大数据-Storm流式框架(七)---Storm事务

storm 事务


需求


storm 对于保证消息处理,提供了最少一次的处理保证。最常见的问题是如果元组可以被
重发,可以用于计数吗?不会重复计数吗?
strom0.7.0 引入了事务性拓扑的概念,可以保证消息仅被严格的处理一次。因此可以以完
全精确的、可扩展的、容错的方式处理类似计数这类的情形。
跟分布式 RPC 类似,事务性拓扑也不是 storm 的新特性,而仅仅是在 storm 原语如数据
流、spout、bolt 和拓扑基础上的高层抽象。


概念


我们先研究最简单的情形,然后进行一个迭代设计,直到达到 storm 的设计级别。


设计一


事务性拓扑的核心观点是数据处理的强有序。
一次只处理一个元组,直到该元组被成功处理,才开始处理下一个元组。
每个元组关联一个事务 ID。
如果元组处理失败,需要重发,重发的时候使用相同的事务 ID。

事务 ID 是一个整数,该整数对每个元组都会增长,也就是第一个元组的事务 ID 是 1,第
二个是 2,以此类推。
强有序保证了即使在元组重发的情况下对该元组也仅仅处理一次。
假设我们要统计一下数据流中元组的全局计数。应该将计数和最新的事务 ID 一起作为一条
记录存储到数据库中。
只能是数据库中的事务 ID 和当前元组的事务 ID 不同的时候,更新数据库中的数据。
3tx c8 db
3tx c12 tuple


考虑两种情形:


1、 数据库中的事务 ID 和当前的事务 ID 不同:由于事务的强有序,数据库中的计数不包
括当前元组。我们可以安全地更新数据库中的计数和事务 ID。
2、 数据库中的事务 ID 和当前元组的事务 ID 相同:当前元组已经统计在数据库中的计数
中了,放弃这次对数据库的更新。因为当前的元组肯定是在更新完数据库之后,通知
storm 处理成功之前出错了。
而且,这种拓扑的设计可以在同一个事务内更新很多源的状态,而且是精确地只处理一
次。如果某些源更新失败了需要重发元组,已经更新成功的源会跳过重试,失败的源会合
理地处理重试。


但是一次只处理一个元组有很大的缺陷:


1、因为等前一个元组完全处理了再处理下一个元组是一件很恐怖的事情 ,效率低,
时间长。
2、大量调用数据库(起码每个元组一次),
3、没有发挥 storm 并发的优势。
因此这种设计不是可扩展的。


设计二


1、在每个事务中处理一批元组。
如果是全局计数,一批元组的数量可以一次性地更新到数据库中。
2、如果批处理失败,就重发这一批失败的元组。
3、不能给每个元组一个事务 ID,而应该给一批元组一个事务 ID
4、而且各批次之间强有序。


看下图:

如果一个批次处理1000个元组,则对数据库的调用就比设计一减少了1000倍。另外,它也利用了storm的并发优势,因为一个批次的元组是可以并发处理的。

依然没有高效地利用资源。因为拓扑中的worker花费了很多时间在等待其他部分的计算完成。例如:

当bolt1完成了它的处理,它会等待其他的bolt的处理完成之后才可以接收到spout发送的下一批数据。

设计三(storm的设计)

一个关键的认知在于:在批处理中并不是所有的步骤都需要强有序

storm通过将一个批的计算划分为两步骤来实现:

  1. 处理阶段:这是可以并行处理很多批的阶段
  2. 提交阶段:该阶段是各批强有序的。如果批次1没有提交成功,是不会提交批次2的。

两步骤作为一个整体,称为“事务”。在一个给定的时刻很多批都在进行计算,但是只有一个批次处于提交阶段。不管是在处理阶段还是在提交阶段,如果一个批次的元组处理失败了,整个事务重新执行(两个阶段)。

设计细节

当使用事务拓扑的时候,storm进行如下处理:

  1. 管理状态:事务性拓扑的所有必须的状态都存储于Zookeeper中。包括当前的事务ID以及定义了每个批次参数的元数据。
  2. 事务调度:storm管理必要的所有数据以决定在任意一个时点哪个事务应该处于处理阶段还是提交阶段
  3. 错误检测:storm利用确认机制框架高效地确定一个批次是成功处理了、成功提交了,还是失败了。storm会恰当地进行重发。用户不需要做任何的确认或锚标记——storm来管理这一切。
  4. 一流的批处理API:storm在普通bolt之上设计了API用于元组的批处理。storm管理所有的调度以确认何时一个任务收到了某个事务的所有元组。storm也会清除或累加每个事务的状态(就像部分计数一样)。

最后,storm需要一个源队列以进行精确的消息批的重发。Apache Kafka就非常适合这种任务的spout,storm-kafka包含了Kafka事务性spout的具体实现。

事务拓扑API

bolt

在事务拓扑中存在三种bolt:

  1. BasicBolt:该bolt不处理批的元组,而仅仅是基于单个元组进行处理并发射。
  2. BatchBolt:该bolt处理批的元组。对每个元组调用execute方法,当一个批次处理完之后就调用finishBatch方法。
  3. 标记为提交器的bolt:该bolt和普通的bolt唯一的区别在于何时调用finishBatch方法。提交器的finishBatch方法在提交阶段调用。保证在提交阶段,所有前置的批都已经成功提交,并且当它提交成功,就完成了它的使命。两种方式将BatchBolt标记为提交器,要么实现ICommitter接口,要么在TransactionalTopologyBuilder中调用setCommitterBolt方法设置bolt。

处理阶段和提交阶段

为了区分提交阶段和处理阶段的差别,让我们看一个案例:

在该拓扑中,只有标记为红色的才是提交器。

在处理阶段,bolt A处理完spout发送的一个批的元组,调用finishBatch方法将它的元组发送给bolt B和Bolt C。Bolt B是一个提交器,因此它会调用execute方法来处理所有的元组但是不会调用finishBatch方法。Bolt C的finishBatch方法也不会调用,因为它不知道是否已经接收了所有来自B的元组(因为bolt B在等待事务提交)。最后,bolt D会接收通过调用C发送过来的任何元组。

只要不是提交事务,B不会调用finishBatch,C不是提交器,也不调用finishBatch,因为它不知道是否接收了B全部的元组。

当批提交的时候,调用B的finishBatch方法。一旦提交完成,C知道它已经接收了所有的元组并调用finishBatch方法。最后,D会接收到完成的批并调用finishBatch方法。

注意,D是一个提交器,当它接收了批的所有元组,不需要等待第二个提交的信号。因为它在提交阶段已经接收到了整个批的数据,直接提交并完成事务。

提交器bolt的行为和提交阶段的batch bolt很像。唯一的区别在于提交器在事务的处理阶段不会调用finishBatch方法。

确认

在事务拓扑中我们不需要做任何的确认和锚标记。

由storm管理。

确认策略进行了极大的优化。

事务的失败

当使用普通bolt的时候,可以调用OutputCollector的fail方法让整个元组树上的元组失败。由于事务拓扑隐藏了确认框架的细节,它们提供了一个不同的让批失败的方法。直接抛出FailedException。跟普通异常不同,该异常只会导致特定批失败并重发,不会让整个进程宕掉。

事务性spout

TransactionalSpout接口跟普通的Spout接口完全不同。TransactionalSpout的实现类发射元组的批,并且必须保证同批元组永远以相同的事务ID发射。

事务spout看起来像这样:

左边的调度器是storm一个普通的spout,当需要发射事务批元组的时候它会挨个儿发送元组。发射器的执行跟storm的bolt很像,负责发射批中的元组。发射器使用全分组订阅调度器的"batch emit"流。

TransactionalSpout在zookeeper中存储少量状态,用于对发出的元组进行幂等,即对于相同的事务id重发的时候要保证数据是一样的。如果获取不到一样的数据,可以使用非幂等事务spout。

分区事务spout

对于事务spout一个常见的情形是从跨多个队列的一组分区中读取消息。例如,这就是TransactionalKafkaSpout做的事情。IPartitionedTransactionalSpout自动执行管理每个分区的状态的簿记工作,以确保幂等可重放性。

配置

对于事务性拓扑有两个重要的配置:

  1. zookeeper:默认,事务拓扑在同一个zookeeper实例中保存状态信息以管理storm集群。可以通过"transactional.zookeeper.servers"和"transactional.zookeeper.port"配置zookeeper。
  2. 允许一次处理的批数量:必须设置一次处理几个批的限制数字。使用"topology.max.spout.pending"。如果不配置,默认是1。

数据流如何工作
    1. 事务spout是一个包含了调度器spout和发射器bolt的子拓扑。
    2. 调度器是一个并行度为1的普通spout。
    3. 发射器是一个并行度为P的bolt,使用全分组订阅调度器spout的"batch"流。
    4. 当调度器spout确认了事务应该进入处理阶段了,就发射包含TransactionalAttempt和元数据的事务元组到"batch"流。
    5. 由于使用了全分组,每个发射器都会接收到通知,知道该发射事务中它们自己部分的元组了
    6. 在整个拓扑中,storm自动管理锚标记和确认机制,以确认何时事务完成了处理阶段。这里的关键是“根元组由调度器创建”,如果处理成功了,调度器会接收到确认消息,如果不管什么原因处理不成功(失败或超时),则接收到"fail"。
    7. 如果处理阶段成功了,所有前置的事务也成功提交了,调度器发射一个包含了TransactionAttempt的元组给"commit"流。
    8. 所有提交的bolt通过全分组订阅提交流信息,因此它们会接收到一个什么时候发生提交的通知。
    9. 跟处理阶段一样,调度器使用确认框架确认提交阶段是否成功。如果收到ack,就在zookeeper中将该事务标记为已完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/174660.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【电路笔记】-交流电感和感抗

交流电感和感抗 文章目录 交流电感和感抗1、概述1.1 电感1.2 电感器 2、频率特性2.1 电抗(Reactance)2.2 相移2.3 感应现象 3、RL滤波器4、总结 在之前有 交流电阻的文章中,我们已经看到电阻器在正常频率下的直流或交流状态下的行为是相同的。 然而,其他…

【机器学习合集】人脸表情分类任务Pytorch实现TensorBoardX的使用 ->(个人学习记录笔记)

人脸表情分类任务 注意:整个项目来自阿里云天池,下面是开发人员的联系方式,本人仅作为学习记录!!!该文章原因,学习该项目,完善注释内容,针对新版本的Pytorch进行部分代码…

山东大学开发可解释深度学习算法 RetroExplainer,4 步识别有机物的逆合成路线

逆合成旨在找到一系列合适的反应物,以高效合成目标产物。这是解决有机合成路线的重要方法,也是有机合成路线设计的最简单、最基本的方法。 早期的逆合成研究多依赖编程,随后这一工作被 AI 接替。然而,现有的逆合成方法多关注单步逆…

机器学习第一周

一、概述 机器学习大致会被划分为两类:监督学习,无监督学习 1.1 监督学习 监督学习其实就是,给计算机一些输入x和正确的输出y(训练数据集),让他总结x->y的映射关系,从而给他其他的输入x&a…

【算法】动态规划之LeetCode 53.最大子数组和

目录 文章目录 **目录**📑前言1.题目描述2. 动态规划法 📑文章末尾 📑前言 本文主要是leetcode题解析,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是青衿🥇 ☁…

ThreadLocal 会出现内存泄漏吗?

ThreadLocal ThreadLocal 是一个用来解决线程安全性问题的工具。它相当于让每个线程都开辟一块内存空间,用来存储共享变量的副本。然后每个线程只需要访问和操作自己的共享变量副本即可,从而避免多线程竞争同一个共享资源。它的工作原理很简单&#xff0…

基于Ubuntu20.04安装ROS系统

文章目录 一、ROS简介二、ROS安装三、ROS安装测试四、安装问题解决1. sudo rosdepc init:找不到命令2. ERROR: cannot download default sources list from...3. Command roscore not found...4. Resource not found: roslaunch... 一、ROS简介 ROS是用于编写机器人…

[ubuntu系统下的文本编辑器nano,vim,gedit,文件使用,以及版本更新问题]

文本编辑器概要 在Ubuntu系统下,有许多文本编辑器可供选择,每个编辑器都有其独特的特性和用途。以下是一些常见的文本编辑器: Gedit: 这是Ubuntu默认的文本编辑器,它简单易用,适合基本的文本编辑任务。 安…

取石子

每一堆数量都>1的话可以把合并操作和取石子看成一种操作,总操作数就是sumn-1,为奇数就是Alice先手必胜,哪怕有一堆是2,Bob取后变为1,Alice也可以通过合并操作让1变成>1的数 可以分成两大板块a、b, a中方石子个数…

haproxy高可用集群

高可用集群 Haproxy :他是常用的负载均衡软件 Nginx 支持四层转发,和七层转发 Haproxy 也可以四层和七层转发 LVS的DR发和nat是基于四层还是七层的转? 都基于是四层转发&#xff08…

[SHCTF 2023 校外赛道] pwn

有19道题这么多,不过基本是入门题,都是在骗新生,看这么容易快来PWN吧! week1 四则计算器 这里用危险函数gets读入有个溢出.而且PIE也没开,地址是固定的.而且有后门.直接溢出到ret写上后门即可. from pwn import *p remote(112.6.51.212, 31473) context(archamd64, log_lev…

#stm32整理(二)关于MDK的编译过程及文件类型全解

参考野火开发指南如有侵权即刻删除,只是为了学习交流使用 1、编译 1、编译过程简介 (1)编译,MDK 软件使用的编译器是 armcc 和 armasm,它们根据每个 c/c 和汇编源文件编译 成对应的以“.o”为后缀名的对象文件 (Object Code&…

修改el-date-picker宽度

<div style"width: 100%"><el-date-pickerstyle"width:100%"v-model"value"type"datetimerange"start-placeholder"开始日期"end-placeholder"结束日期":default-time"[12:00:00]"value-forma…

Redis队列Stream

1 缘起 项目中处理文件的场景&#xff1a; 将文件处理请求放入队列&#xff0c; 一方面&#xff0c;缓解服务器文件处理压力&#xff1b; 另一方面&#xff0c;可以根据文件大小拆分到不同的队列&#xff0c;提高文件处理效率。 这是Java开发组Leader佳汇提出的文件处理方案&a…

hdlbits系列verilog解答(8位宽移位寄存器)-24

文章目录 一、问题描述二、verilog源码三、仿真结果一、问题描述 这项练习是module_shift移位寄存器的延伸。模块端口不是只有单个引脚,我们现在有以向量作为端口的模块,您将在其上附加线向量而不是普通线网数据。与 Verilog 中的其他位置一样,端口的向量长度不必与连接到它…

Go语言用Resty库编写的音频爬虫代码

目录 一、Go语言与Resty库简介 二、音频爬虫的实现 1、确定抓取目标 2、使用Resty发送HTTP请求 3、解析响应数据 4、下载音频文件 5、并发下载音频文件 三、注意事项 总结 随着互联网的飞速发展&#xff0c;网络爬虫逐渐成为数据获取和分析的重要工具。在音频领域&…

[NSSCTF 2nd] web刷题记录

文章目录 php签到MyBox非预期解预期解 php签到 源代码 <?phpfunction waf($filename){$black_list array("ph", "htaccess", "ini");$ext pathinfo($filename, PATHINFO_EXTENSION);foreach ($black_list as $value) {if (stristr($ext, …

【计算机网络】什么是HTTPS?HTTPS为什么是安全的?

【面试经典题】 前言&#xff1a; HTTP最初的设计就是用于数据的共享和传输&#xff0c;并没有考虑到数据的安全性&#xff0c;如窃听风险&#xff0c;篡改风险和冒充风险。HTTPS是在 HTTP 的基础上引入了一个加密层。HTTPS通过数据加密&#xff0c;数据完整性检验和身份认证…

BUUCTF_练[CISCN2019 华北赛区 Day1 Web5]CyberPunk

[CISCN2019 华北赛区 Day1 Web5]CyberPunk 文章目录 [CISCN2019 华北赛区 Day1 Web5]CyberPunk掌握知识解题思路代码分析paylaod的构建正式解题 关键paylaod 掌握知识 ​ php伪协议读取文件&#xff1b;源码泄露hint &#xff1b;代码审计 发现二次注入点&#xff1b;SQL语句的…