题目描述
给定一个未排序的整数数组,找到最长递增子序列的个数。示例 1:输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
示例 2:输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。
注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-longest-increasing-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
方法 1:动态规划
思路
代码
JavaScript Code
/*** @param {number[]} nums* @return {number}*/ var findNumberOfLIS = function (nums) {const n = nums.length;const length = Array.from({ length: n }).fill(1);const count = Array.from({ length: n }).fill(1);for (let i = 0; i < n; i++) {for (let j = 0; j < i; j++) {if (nums[j] >= nums[i]) continue;if (length[j] + 1 > length[i]) {length[i] = length[j] + 1;count[i] = count[j];} else if (length[j] + 1 == length[i]) {count[i] += count[j];}}}const longest = Math.max(...length);return length.reduce((cnt, len, i) => (len == longest ? cnt + count[i] : cnt),0); };
C++ Code
class Solution { public:int findNumberOfLIS(vector<int>& nums) {int n = nums.size();vector<int> length(n, 1);vector<int> count(n, 1);for (int i = 0; i < n; i++) {for (int j = 0; j < i; j++) {if (nums[i] <= nums[j]) continue;if (length[j] + 1 > length[i]) {length[i] = length[j] + 1;count[i] = count[j];}else if (length[j] + 1 == length[i]) {count[i] += count[j];}}}int longest = *max_element(length.begin(), length.end());int ans = 0;for (int i = 0; i < n; i++) {if (length[i] == longest) {ans += count[i];}}return ans;} };
复杂度分析
- 时间复杂度:$O(N^2)$。N 是数组
nums
的长度。 - 空间复杂度:$O(N)$。N 是辅助数组
length
和count
的长度。