【计算机网络笔记】传输层——可靠数据传输原理之Rdt协议

系列文章目录

什么是计算机网络?
什么是网络协议?
计算机网络的结构
数据交换之电路交换
数据交换之报文交换和分组交换
分组交换 vs 电路交换
计算机网络性能(1)——速率、带宽、延迟
计算机网络性能(2)——时延带宽积、丢包率、吞吐量/率
计算机网络体系结构概念
OSI参考模型基本概念
OSI参考模型中非端-端层(物理层、数据链路层、网络层)功能介绍
OSI参考模型中端-端层(传输层、会话层、表示层、应用层)功能介绍
TCP/IP参考模型基本概念,包括五层参考模型
网络应用的体系结构
网络应用进程通信
网络应用对传输服务的需求
Web应用之HTTP协议(涉及HTTP连接类型和HTTP消息格式)
Cookie技术
Web缓存/代理服务器技术
传输层服务概述、传输层 vs. 网络层
传输层——多路复用和多路分用
传输层——UDP简介


  • 系列文章目录
  • 可靠数据传输原理
  • Rdt1.0:可靠信道
  • Rdt2.0:产生位错误的信道
  • Rdt2.1:应对ACK/NAK破坏
  • Rdt2.2:无NAK消息协议
  • Rdt3.0


文章较长,有4013字,建议收藏后慢慢品读 💖


可靠数据传输原理

可靠数据传输是计算机网络的核心问题之一。

可靠指的是数据在传输的过程中不出错(比如不会发生某一位翻转的情况)、数据不丢失、分组的顺序不乱

可靠数据传输依靠可靠数据传输协议

我们需要认识到哪些因素导致信道的不可靠传输,才能解决问题。

我们将用Rdt这个缩写代替可靠数据传输。

可靠数据传输协议基本结构:接口

在这里插入图片描述

下面来介绍可靠数据传输协议。我们循序渐进地来设计可靠数据传输协议的发送方和接收方。并且只考虑单向数据传输,但控制信息双向流动。此外,我们利用有限状态机(Finite State Machine, FSM)刻画传输协议。

在这里插入图片描述

  • 用圆圈代表当前所处的状态,中间的箭头代表状态间的转换,箭头上有文字并且划有横线,横线上方写的是引起状态变迁的事件(event),横线下方写的是进行状态转换过程中要采取的活动(action)。

Rdt1.0:可靠信道

Rdt1.0研究在可靠信道上进行可靠数据传输。这是理想的状态。也就是说不会发生错误,也不会丢弃分组。

因为是可靠信道,所以发送方和接收方之间不需要进行控制信息的交换。发送方只需要发出去就好了,它知道数据会被可靠地传输。这样他俩之间没有交互信息,所以发送方和接收方的FSM独立。

发送方就一个状态,当上层调用rdt_send函数传来数据这个事件发生后,要采取一个活动,也就是创建packet分组然后调用信道上的udt_send将分组发出去。发出去之后由于确信分组会百分百正确地交付,所以就回到这个状态继续等待。

在这里插入图片描述

接收方也就一个状态,即等待下层的调用(rdt_rcv(packet)),然后提取数据交给上层,接着又回到等待状态。

在这里插入图片描述


Rdt2.0:产生位错误的信道

从2.0开始研究更贴近实际的情况,也就是不可靠信道上的可靠数据传输协议。

Rdt2.0研究这样的信道:可能产生位错误(比如0变1,1变0)的信道并且只可能产生这个错误。

要解决的问题:接收方首先需要判断数据是否出错,如果错了,需要重新传输数据。作为发送方,它是不知道分组在传输过程中是否出错的,需要接收方来告知。

  • 辨别数据是否出现位错误:利用校验和检测位错误
  • 从错误中恢复:
    • 引入确认机制(Acknowledgements, ACK):接收方显式地告诉发送方是否已正确接收分组。如果正确接收,就是ACK;如果分组有错误就是NAK
    • 发送方收到NAK后,重传分组。

基于这种ACK机制、NAK机制和重传机制的rdt协议称为ARQ(Automatic Repeat reQuest)协议

总结Rdt2.0中引入的新机制:

  • 差错检测
  • 接收方反馈控制消息: ACK/NAK
  • 重传

发送方现在有2个状态,一个是等待上层调用,一个是等待接收方控制消息。这种协议是停 —等协议

在这里插入图片描述

接收方的状态只有一个:

在这里插入图片描述

Rdt2.1:应对ACK/NAK破坏

为什么要改进?也就是说Rdt 2.0有什么缺陷?要是控制消息出错怎么办?因为ACK和NAK在传给发送方的时候也是有可能出现位错误的,那么这个时候发送方就识别不了控制信息,就会发生死锁。

可能的解决方案:

  • 为ACK/NAK增加校验和,检错并纠错。难度很高。
  • 添加额外的控制消息。无法从根本上解决问题。因为这个额外的控制消息在传输过程中仍然可能会坏掉。
  • 如果ACK/NAK坏掉,发送方重传。这是普遍使用的方法。但是这样可能会产生重复分组。所以需要采用一种机制解决分组重复的问题。

那怎么解决重复分组的问题?采用常用的解决方法:发送方给每个分组增加序列号。如果是重复的就丢弃。

所以Rdt2.1中解决了ACK/NAK被破坏的问题。

发送方的状态机状态变多了一倍:

在这里插入图片描述

接收方的状态机状态也多了一倍:

在这里插入图片描述

相比于Rdt2.0,Rdt2.1有了这些改进:

  • 发送方:

    • 为每个分组增加了序列号,并且只要两个序列号(0, 1)就够用了
    • 需校验ACK/NAK消息是否发生错误
    • 状态数量翻倍,因为状态必须“记住” “当前”的分组序列号
  • 接收方:

    • 需判断分组是否是重复
    • 注意:接收方无法知道ACK/NAK 是否被发送方正确收到

Rdt2.2:无NAK消息协议

我们真的需要两种确认消息(ACK + NAK)吗?
我们可以定义一种没有NAK消息的协议。

  • 与rdt 2.1功能相同,但是只使用ACK
  • 如何实现?
    • 接收方通过ACK告知最后一个被正确接收的分组
    • 在ACK消息中显式地加入被确认分组的序列号
    • 发送方收到重复ACK之后,采取与收到NAK消息相同的动作,也就是重传当前分组。

Rdt3.0

在Rdt2.0系列我们假设信道只可能发生位错误,那如果可可能丢失分组,怎么办?

“校验和 + 序列号 + ACK + 重传”不够用了。

处理的方法比较简单:发送方等待一个合理的时间

  • 等待了一个合理的时间之后如果没收到ACK,就重传
  • 需要定时器

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

但是停-等操作这个机制让Rdt协议的性能很差。还需要改进。这需要打破停-等协议。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/176329.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于深度学习的人脸表情识别 计算机竞赛

文章目录 0 前言1 技术介绍1.1 技术概括1.2 目前表情识别实现技术 2 实现效果3 深度学习表情识别实现过程3.1 网络架构3.2 数据3.3 实现流程3.4 部分实现代码 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸表情识别 该项目较…

视频汇聚平台EasyCVR分发的流如何进行token鉴权?具体步骤是什么?

视频监控EasyCVR平台能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多路视频流,也能支持视…

智安网络|保护您的应用程序免受攻击:重要的安全强化措施

在今天的数字化时代,应用程序安全成为了企业和个人必须重视的重要领域。应用程序普遍存在的安全漏洞成为黑客们进行攻击的一个突破口。为了保护敏感数据和个人隐私,我们必须了解并实施一系列的关键措施来加固应用程序的安全性。 首先,一个关…

SSM培训报名管理系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 SSM 培训报名管理系统是一套完善的信息系统,结合SSM框架完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码和数据库,系统主 要采用B/S模式开…

Mac docker+vscode

mac 使用docker vs code 通过vscode 可以使用docker容器的环境。 可以在容器安装gdb, 直接调试代码。 创建容易时候可以指定目录和容易目录可以共享文件。

十年回望 -- JAVA

十年 十年时间,弹指一挥,好像一直都是在为工作奔波,匆匆忙忙的十年。 一、个人介绍 本人毕业于一所很普通的公办专科院校(全日制统招大专),专业是软件技术,当初能进入计算机这一行业&#xff0…

数字孪生与智慧城市:开启未来智慧生活

在数字时代的浪潮中,数字孪生技术和智慧城市的理念相互交织,共同塑造了一个更智能、更可持续、更宜居的未来。数字孪生是一项前沿技术,将虚拟世界与现实世界相融合,为城市管理者和市民带来了前所未有的机遇和便捷。 数字孪生模型是…

FreeRTOS深入教程(空闲任务和Tick中断深入分析)

文章目录 前言一、空闲任务源码分析二、Tick中断深入分析总结 前言 本篇文章主要带大家深入分析空闲任务和Tick中断的作用。 一、空闲任务源码分析 在启动调度器时会创建出空闲任务: /* 启动调度器 */ vTaskStartScheduler();在空闲任务中会调用到prvCheckTasks…

Unity地面交互效果——2、动态法线贴图实现轨迹效果

Unity引擎动态法线贴图制作球滚动轨迹 大家好,我是阿赵。   之前说了一个使用局部UV采样来实现轨迹的方法。这一篇在之前的基础上,使用法线贴图进行凹凸轨迹的绘制。 一、实现的目标 先来回顾一下,上一篇最终我们已经绘制了一个轨迹的贴图…

ASCB1系列智能微型断路器在科技馆中的应用-安科瑞黄安南

【摘要】:安科瑞电气厂家直供黄安南1876-15//06-237,ASCB1系列智能微型断路器是安科瑞电气股份有限公司全新推出的智慧用电产品,产品由智能微型断路器与智能网关两部分组成,可用于对用电线路的关键电气因素,如电压、电…

数据交易是什么?国内的数据交易有哪些?

目录 数据交易是什么?国内的数据交易有哪些? 数据交易的概念 国内数据交易发展历程 数据交易主体 国内数据交易市场面临的问题 如何解决: 明确交易标准,推动交易市场,制定规则,完善数据监管机制&…

coturn服务器的搭建

Window下搭建coturn服务器: 准备材料: 1、安装Cygwin,地址:https://cygwin.com/install.html 由于Window无法直接部署coturn,因此需要下载安装Cygwin在Window上部署Linux虚拟环境。 在安装的时候需要安装几下packe…

第18期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练 Transformer(GPT)、人工智能生成内容(AIGC)以及大型语言模型(LLM)等安全领域应用的知识。在这里,您可以…

框架安全-CVE 漏洞复现DjangoFlaskNode.jsJQuery框架漏洞复现

目录 服务攻防-框架安全&CVE复现&Django&Flask&Node.JS&JQuery漏洞复现中间件列表介绍常见语言开发框架Python开发框架安全-Django&Flask漏洞复现Django开发框架漏洞复现CVE-2019-14234(Django JSONField/HStoreField SQL注入漏洞&#xff…

实用篇-Linux

一、Linux介绍 linux特点 免费开源多用户多任务 Linux系统版本分为内核版和发行版 发行版是基于内核版进行扩展,由各个Linux厂商开发和维护,因为我们真正使用linux最终安装的其实是linux的发行版 下面以CentOS为例来学习Linux 二、Linux安装 安装方式…

编写Groovy Hello World 程序

使用 IntelliJ IDEA 打开 IntelliJ IDEA,并创建一个新的 Groovy 项目。 在项目中创建一个新的 Groovy 类文件,命名为 HelloWorld.groovy。 在 HelloWorld.groovy 文件中,编写以下代码: class HelloWorld {static void main(Stri…

NLP实践——中文指代消解方案

NLP实践——中文指代消解方案 1. 参考项目2. 数据2.1 生成conll格式2.2 生成jsonline格式 3. 训练3.1 实例化模型3.2 读取数据3.3 评估方法3.4 训练方法 4. 推理5. 总结 1. 参考项目 关于指代消解任务,有很多开源的项目和工具可以借鉴,比如spacy的基础模…

万字解析设计模式之工厂方法模式与简单工厂模式

一、概述 1.1简介 在java中,万物皆对象,这些对象都需要创建,如果创建的时候直接new该对象,就会对该对象耦合严重,假如我们要更换对象,所有new对象的地方都需要修改一遍,这显然违背了软件设计的…