基于深度学的图像修复 图像补全 计算机竞赛

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学的图像修复 图像补全

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 什么是图像内容填充修复

内容识别填充(译注: Content-aware fill ,是 photoshop
的一个功能)是一个强大的工具,设计师和摄影师可以用它来填充图片中不想要的部分或者缺失的部分。在填充图片的缺失或损坏的部分时,图像补全和修复是两种密切相关的技术。有很多方法可以实现内容识别填充,图像补全和修复。

  • 首先我们将图像理解为一个概率分布的样本。
  • 基于这种理解,学*如何生成伪图片。
  • 然后我们找到最适合填充回去的伪图片。

在这里插入图片描述

自动删除不需要的部分(海滩上的人)
在这里插入图片描述

最经典的人脸补充

补充前:

在这里插入图片描述

补充后:
在这里插入图片描述

3 原理分析

3.1 第一步:将图像理解为一个概率分布的样本

你是怎样补全缺失信息的呢?

在上面的例子中,想象你正在构造一个可以填充缺失部分的系统。你会怎么做呢?你觉得人类大脑是怎么做的呢?你使用了什么样的信息呢?

在博文中,我们会关注两种信息:

语境信息:你可以通过周围的像素来推测缺失像素的信息。

感知信息:你会用“正常”的部分来填充,比如你在现实生活中或其它图片上看到的样子。
两者都很重要。没有语境信息,你怎么知道填充哪一个进去?没有感知信息,通过同样的上下文可以生成无数种可能。有些机器学*系统看起来“正常”的图片,人类看起来可能不太正常。
如果有一种确切的、直观的算法,可以捕获前文图像补全步骤介绍中提到的两种属性,那就再好不过了。对于特定的情况,构造这样的算法是可行的。但是没有一般的方法。目前最好的解决方案是通过统计和机器学习来得到一个类似的技术。

在这里插入图片描述

从这个分布中采样,就可以得到一些数据。需要搞清楚的是PDF和样本之间的联系。

在这里插入图片描述

从正态分布中的采样

在这里插入图片描述
2维图像的PDF和采样。 PDF 用等高线图表示,样本点画在上面。

3.2 补全图像

首先考虑多变量正态分布, 以求得到一些启发。给定 x=1 , 那么 y 最可能的值是什么?我们可以固定x的值,然后找到使PDF最大的 y。
在这里插入图片描述
在多维正态分布中,给定x,得到最大可能的y

这个概念可以很自然地推广到图像概率分布。我们已知一些值,希望补全缺失值。这可以简单理解成一个最大化问题。我们搜索所有可能的缺失值,用于补全的图像就是可能性最大的值。
从正态分布的样本来看,只通过样本,我们就可以得出PDF。只需挑选你喜欢的 统计模型, 然后拟合数据即可。
然而,我们实际上并没有使用这种方法。对于简单分布来说,PDF很容易得出来。但是对于更复杂的图像分布来说,就十分困难,难以处理。之所以复杂,一部分原因是复杂的条件依赖:一个像素的值依赖于图像中其它像素的值。另外,最大化一个一般的PDF是一个非常困难和棘手的非凸优化问题。

3.3 快速生成假图像

在未知概率分布情况下,学习生成新样本

除了学 如何计算PDF之外,统计学中另一个成熟的想法是学 怎样用 生成模型
生成新的(随机)样本。生成模型一般很难训练和处理,但是后来深度学*社区在这个领域有了一个惊人的突破。Yann LeCun 在这篇 Quora
回答中对如何进行生成模型的训练进行了一番精彩的论述,并将它称为机器学习领域10年来最有意思的想法。

3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构

使用微步长卷积,对图像进行上采样

在这里插入图片描述
现在我们有了微步长卷积结构,可以得到G(z)的表达,以一个向量z∼pz 作为输入,输出一张 64x64x3 的RGB图像。

在这里插入图片描述

3.5 使用G(z)生成伪图像

基于DCGAN的人脸代数运算 DCGAN论文 。

在这里插入图片描述

4 在Tensorflow上构建DCGANs

部分代码:

def generator(self, z):self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4, 'g_h0_lin', with_w=True)self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])h0 = tf.nn.relu(self.g_bn0(self.h0))self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,[self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)h1 = tf.nn.relu(self.g_bn1(self.h1))h2, self.h2_w, self.h2_b = conv2d_transpose(h1,[self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)h2 = tf.nn.relu(self.g_bn2(h2))h3, self.h3_w, self.h3_b = conv2d_transpose(h2,[self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)h3 = tf.nn.relu(self.g_bn3(h3))h4, self.h4_w, self.h4_b = conv2d_transpose(h3,[self.batch_size, 64, 64, 3], name='g_h4', with_w=True)return tf.nn.tanh(h4)def discriminator(self, image, reuse=False):if reuse:tf.get_variable_scope().reuse_variables()h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')return tf.nn.sigmoid(h4), h4

当我们初始化这个类的时候,将要用到这两个函数来构建模型。我们需要两个判别器,它们共享(复用)参数。一个用于来自数据分布的小批图像,另一个用于生成器生成的小批图像。

self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

接下来,我们定义损失函数。这里我们不用求和,而是用D的预测值和真实值之间的交叉熵(cross
entropy),因为它更好用。判别器希望对所有“真”数据的预测都是1,对所有生成器生成的“伪”数据的预测都是0。生成器希望判别器对两者的预测都是1 。

self.d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,tf.ones_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake

下面我们遍历数据。每一次迭代,我们采样一个小批数据,然后使用优化器来更新网络。有趣的是,如果G只更新一次,鉴别器的损失不会变成0。另外,我认为最后调用
d_loss_fake 和 d_loss_real 进行了一些不必要的计算, 因为这些值在 d_optim 和 g_optim 中已经计算过了。
作为Tensorflow 的一个联系,你可以试着优化这一部分,并发送PR到原始的repo。

for epoch in xrange(config.epoch):...for idx in xrange(0, batch_idxs):batch_images = ...batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \.astype(np.float32)# Update D network_, summary_str = self.sess.run([d_optim, self.d_sum],feed_dict={ self.images: batch_images, self.z: batch_z })# Update G network_, summary_str = self.sess.run([g_optim, self.g_sum],feed_dict={ self.z: batch_z })# Run g_optim twice to make sure that d_loss does not go to zero (different from paper)_, summary_str = self.sess.run([g_optim, self.g_sum],feed_dict={ self.z: batch_z })errD_fake = self.d_loss_fake.eval({self.z: batch_z})errD_real = self.d_loss_real.eval({self.images: batch_images})errG = self.g_loss.eval({self.z: batch_z})

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/179673.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IDEA在service面板中不显示微服务的项目

在.idea文件夹下的workspace文件中的project标签内添加如下代码段&#xff0c;&#xff0c;重启idea即可看到所有服务出现在了service面板中 <component name"RunDashboard"><option name"configurationTypes"><set><option value&q…

家用洗地机哪个牌子质量最好?家用洗地机推荐

洗地机也就是集吸尘器&#xff0c;拖地&#xff0c;洗地&#xff0c;功能于一体的家电&#xff0c;无论干湿垃圾都能清理的干干净净&#xff0c;而且还不用弯腰&#xff0c;有的只用换个头&#xff0c;就从拖地变成了吸尘器和除螨仪简直就是清洁家里卫生的打扫神器啦!那么面对市…

Mac电脑怎么运行 Office 办公软件

虽然 Office 软件也有 Mac 版本的&#xff0c;但是有蛮多小伙伴用起来还是感觉不得劲&#xff0c;毕竟接触了太久的 Windows&#xff0c;所以想要使用 Windows 版本的 Office 软件。 今天就给大家介绍一下怎么在 Mac 电脑中运行 Windows 版本的办公软件&#xff0c;在这里就需…

【代码学习】voxel 或者 pillar,稀疏张量 转 稠密张量 的代码理解,理解了很久

需要 feature 和 对应 的坐标 coords debug&#xff1a;转置&#xff0c;不然维度不匹配&#xff01; 对应的代码&#xff0c;向量化 应该 比 for循环快 def voxel_indexing(self, sparse_features, coords): # sparse_features: [N, C], coords:[N, 4]dim sparse_features.…

【数据结构】数组和字符串(十三):链式字符串的基本操作(串长统计、查找、复制、插入、删除、串拼接)

文章目录 4.3 字符串4.3.1 字符串的定义与存储4.3.2 字符串的基本操作&#xff08;链式存储&#xff09;1. 结构体2. 初始化3. 判空4. 串尾添加5. 打印6. 串长统计7. 查找8. 复制9. 插入10. 删除11. 串拼接12. 销毁13. 主函数14. 代码整合 4.3 字符串 字符串(String)是由零个或…

Docker compose容器编排

Docker compose容器编排 1、Docker compose简介 docker-compose是docker的编排工具&#xff0c;用于定义和运行一个项目&#xff0c;该项目包含多个docker容器&#xff0c;在如今的微服务时代&#xff0c;一个项目会存在多个服务&#xff0c;使用docker一个个部署操作的话就会…

计算机网络-应用层

文章目录 应用层协议原理万维网和HTTP协议万维网概述统一资源定位符HTML文档 超文本传输协议&#xff08;HTTP&#xff09;HTTP报文格式请求报文响应报文cookie 万维网缓存与代理服务器 DNS系统域名空间域名服务器和资源记录域名解析过程递归查询迭代查询 动态主机配置协议&…

硬件工程师到底可以从哪些方面提升自己?

大家好,这里是大话硬件。 最近在大话硬件群里,聊得比较多的就是讨论怎么提升自己的能力,怎么拿到更高的工资。我想,这可能并不是只在大话硬件群才有的话题,其实在每一位工作的人心里应该都在想的两个问题。 因此,这篇文章简单分享一下,作为一名硬件工程师,可以在做哪…

1220*2440mm建筑模板木工板:桥梁工程中的覆膜板选择

在桥梁工程中&#xff0c;选择合适的建筑模板木工板至关重要。其中&#xff0c;1220*2440mm规格的建筑模板木工板作为一种常见的选择&#xff0c;特别适用于混凝土工程和桥梁建设。本文将重点介绍这种规格的木工板作为覆膜板在桥梁工程中的应用。 1220*2440mm建筑模板木工板是一…

基于 golang 从零到一实现时间轮算法 (一)

前言 时间轮是用来解决海量百万级定时器&#xff08;或延时&#xff09;任务的最佳方案&#xff0c;linux 的内核定时器就是采用该数据结构实现。 应用场景 自动删除缓存中过期的 Key&#xff1a;缓存中设置了 TTL 的 kv&#xff0c;通过把该 key 对应的 TTL 以及回调方法注册…

第六讲:VBA与ACCESS的ADO连接中,所涉及的对象

《VBA数据库解决方案》教程&#xff08;10090845&#xff09;是我推出的第二套教程&#xff0c;目前已经是第二版修订了。这套教程定位于中级&#xff0c;是学完字典后的另一个专题讲解。数据库是数据处理的利器&#xff0c;教程中详细介绍了利用ADO连接ACCDB和EXCEL的方法和实…

vue 获取上一周和获取下一周的日期时间

效果图&#xff1a; 代码&#xff1a; <template><div><div style"padding: 20px 0;"><div style"margin-left: 10px; border-left: 5px solid #0079fe; font-size: 22px; font-weight: 600; padding-left: 10px">工作计划</…

uni-app离线打包在android studio创建的.jks证书,签名文件获取MD5问题

获取证书信息 keytool -list -v -keystore test.keystore 获取的信息中没有md5信息 可以使用以下方式获取md5. 先创建签名文件&#xff0c;放到项目目录下 配置build.gradle文件 在android studio 打开终端输入以下命令 ./gradlew signingReport 等待生成签名。 生成的内容…

uniapp subNvue 写的视频播放

文件下载地址 https://download.csdn.net/download/weixin_47517731/88500016https://download.csdn.net/download/weixin_47517731/88500016 1:在pages.json中配置视频播放页面 {/* 视频详情页面 */"path": "pages/detail-video/detail","style&q…

Android ConstraintLayout分组堆叠圆角ShapeableImageView

Android ConstraintLayout分组堆叠圆角ShapeableImageView <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app"…

【凡人修仙传】定档曝光,最新更新时间有所调整,期待值暴涨

Hello,小伙伴们&#xff0c;我是小郑继续为大家深度解析国漫资讯。 深度爆料&#xff0c;备受瞩目的动漫作品《凡人修仙传》终于在新年之际宣布定档了&#xff01;这个消息让广大动漫爱好者们激动不已。在某知名视频网站上&#xff0c;这部作品的官方发布了一个名为“新年番定…

Shell变量

Shell变量 本地变量变量定义取出变量值 特殊参数变量⾯试题分享 特殊状态变量脚本控制返回值获取上⼀次后台进程的PID再来分享一道面试题&#xff1a; 获取当前脚本的PID获取上次命令的最后一个参数 本地变量 定义Shell变量&#xff0c;变量名不需要加美元符 $ 本地变量只在⽤…

JS异常处理——throw和try、catch以及debugger

让我为大家介绍一下异常处理吧&#xff01; 异常处理是指预估代码执行过程中可能发生的错误&#xff0c;然后最大程度的避免错误的发生导致整个程序无法继续运行 throw 抛异常 第一种写法 function fun(x, y) {// undefined是false 但取反就是trueif (!x || !y) {// 第一种写…

【ChatGPT瀑布到水母】AI 在驱动软件研发的革新与实践

这里写目录标题 前言内容简介作者简介专家推荐读者对象目录直播预告 前言 计算机技术的发展和互联网的普及&#xff0c;使信息处理和传输变得更加高效&#xff0c;极大地改变了金融、商业、教育、娱乐等领域的运作方式。数据分析、人工智能和云计算等新兴技术&#xff0c;也在不…