【生物信息学】单细胞RNA测序数据分析:计算亲和力矩阵(基于距离、皮尔逊相关系数)及绘制热图(Heatmap)

文章目录

  • 一、实验介绍
  • 二、实验环境
    • 1. 配置虚拟环境
    • 2. 库版本介绍
  • 三、实验内容
    • 0. 导入必要的库
    • 1. 读取数据集
    • 2. 质量控制(可选)
    • 3. 基于距离的亲和力矩阵
    • 4. 绘制基因表达的Heatmap
    • 5. 基于皮尔逊相关系数的亲和力矩阵
    • 6. 代码整合

一、实验介绍

  计算亲和力矩阵,一般按照以下步骤进行:

  • 导入数据:加载单细胞RNA测序数据集。
  • 数据预处理:根据需要对数据进行预处理,例如基因过滤归一化等。
  • 计算亲和力:使用合适的算法(例如,欧几里德距离Pearson相关系数或其他距离/相似度度量)计算样本之间的亲和力(可以使用现有的生物信息学工具包(如Scanpy)来执行此计算。
  • 构建亲和力矩阵:将计算得到的亲和力值组织成一个亲和力矩阵,其中每个元素表示两个样本之间的亲和力

二、实验环境

1. 配置虚拟环境

  可使用如下指令:

conda create -n bio python=3.8
conda activate bio
pip install -r requirements.txt

  其中,requirements.txt:

numpy==1.18.1
matplotlib==3.1.2
seaborn==0.9.0

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.1.23.8.0
numpy1.81.11.26.0
python3.8.16
scipy1.10.11.11.3
seaborn0.12.20.13.0

三、实验内容

0. 导入必要的库

import scanpy as sc
import numpy as np
from scipy.spatial import distance_matrix
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import pearsonr
  • Scanpy是一个用于单细胞RNA测序数据分析的Python库,提供了许多功能和工具来处理和分析单细胞数据

1. 读取数据集

adata = sc.read_h5ad('./pbmc3k.h5ad')

  在生物信息学中,PBMC3K.h5ad是一种常用的单细胞RNA测序数据集,用于研究人类外周血单个核细胞(PBMC)的基因表达。

2. 质量控制(可选)

# 质控
# 过滤掉低质量的细胞和基因
sc.pp.filter_cells(adata, min_genes=200)  # 过滤掉表达基因数目小于200的细胞
sc.pp.filter_genes(adata, min_cells=30)  # 过滤掉被少于3个细胞表达的基因

3. 基于距离的亲和力矩阵

import scanpy as sc
import numpy as np
from scipy.spatial import distance_matrix# 计算亲和力矩阵
adata = sc.read_h5ad('./pbmc3k.h5ad')
dis_matrix = distance_matrix(adata.X, adata.X) # calculate distance matrix
num_cell = dis_matrix.shape[0]
sig = np.var(dis_matrix) # sigma
affinity_matrix = np.zeros((num_cell, num_cell))
for i in range(num_cell):for j in range(num_cell):affinity_matrix[i,j] = np.exp(-dis_matrix[i,j] /(2 * sig))

在这里插入图片描述

4. 绘制基因表达的Heatmap

sns.heatmap(affinity_matrix, cmap='viridis')
plt.title('Affinity Matrix')
plt.xlabel('Cells')
plt.ylabel('Cells')
plt.show()

ChatGPT:

  热图(Heatmap)是一种数据可视化技术,用于显示数据中的密度和模式。它通过将数据点映射到颜色编码的图像上来展示数据的分布情况。热图通常用于显示二维数据,其中每个数据点的位置对应于平面上的坐标,并使用颜色来表示数据点的密度或值。
  在一个热图中,颜色编码表示了数据点的频率或强度。通常,较高的频率或强度用较亮或较暖的颜色(如红色)表示,而较低的频率或强度用较暗或较冷的颜色(如蓝色)表示。这种颜色映射使得我们能够直观地观察和分析数据的分布特征,从而揭示出数据集中的模式、热点和趋势。
  热图在多个领域和应用中都得到了广泛使用。在数据分析和可视化中,热图常用于显示热点地区、人口密度、温度分布、点击热度、基因表达模式等。在商业领域,热图可以帮助用户更好地理解和解释数据,从而支持决策制定和问题解决。此外,热图还在医学、生物学、交通规划、市场营销等领域中发挥着重要作用。

在这里插入图片描述

5. 基于皮尔逊相关系数的亲和力矩阵

  【生物信息学】使用皮尔逊相关系数进行相关性分析

from scipy.stats import pearsonr
# 计算每对细胞之间的皮尔逊相关系数pearson_matrix = np.zeros((num_cell, num_cell))
for i in range(num_cell):for j in range(num_cell):pearson_matrix[i, j] = pearsonr(adata.X[i], adata.X[j])[0]# 将合并的亲和力矩阵保存
adata.obsp['distances'] = combined_affinitysns.heatmap(combined_affinity, cmap='viridis')
plt.title('Combined Matrix')
plt.xlabel('Cells')
plt.ylabel('Cells')
plt.show()

6. 代码整合

import scanpy as sc
import numpy as np
from scipy.spatial import distance_matriximport seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import pearsonr# 计算亲和力矩阵
adata = sc.read_h5ad('./pbmc3k.h5ad')
dis_matrix = distance_matrix(adata.X, adata.X) # calculate distance matrix
num_cell = dis_matrix.shape[0]
sig = np.var(dis_matrix) # sigma
affinity_matrix = np.zeros((num_cell, num_cell))
for i in range(num_cell):for j in range(num_cell):affinity_matrix[i,j] = np.exp(-dis_matrix[i,j] /(2 * sig))# %%# 创建热图
sns.heatmap(affinity_matrix, cmap='viridis')
plt.title('Affinity Matrix')
plt.xlabel('Cells')
plt.ylabel('Cells')
plt.show()# %%
from scipy.stats import pearsonr
# 计算每对细胞之间的皮尔逊相关系数pearson_matrix = np.zeros((num_cell, num_cell))
for i in range(num_cell):for j in range(num_cell):pearson_matrix[i, j] = pearsonr(adata.X[i], adata.X[j])[0]# 将基于距离的亲和力矩阵和皮尔逊相关系数亲和力矩阵相加
combined_affinity = affinity_matrix + pearson_matrix# 将合并的亲和力矩阵保存
adata.obsp['distances'] = combined_affinitysns.heatmap(combined_affinity, cmap='viridis')
plt.title('Affinity Matrix')
plt.xlabel('Cells')
plt.ylabel('Cells')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/179864.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ElasticSearch系列-04】ElasticSearch的聚合查询操作

ElasticSearch系列整体栏目 内容链接地址【一】ElasticSearch下载和安装https://zhenghuisheng.blog.csdn.net/article/details/129260827【二】ElasticSearch概念和基本操作https://blog.csdn.net/zhenghuishengq/article/details/134121631【三】ElasticSearch的高级查询Quer…

动态路由协议OSPF项目部署(二)

1. 静态和动态路由的区别; 2. OSPF协议通信过程与部署; 3. OSPF协议在项目上的应用场景 - OSPF - 开放式最短路径优先 - 一个动态路由协议 - 路由器转发数据 - 路由器需要一张地图 - 路由表 - 路由表如何构建的? - 依靠手动 或…

python脚本监听域名证书过期时间,并将通知消息到钉钉

版本一: 执行脚本带上 --dingtalk-webhook和–domains后指定钉钉token和域名 python3 ssl_spirtime.py --dingtalk-webhook https://oapi.dingtalk.com/robot/send?access_tokenavd345324 --domains www.abc1.com www.abc2.com www.abc3.com脚本如下 #!/usr/bin…

面试算法53:二叉搜索树的下一个节点

题目 给定一棵二叉搜索树和它的一个节点p,请找出按中序遍历的顺序该节点p的下一个节点。假设二叉搜索树中节点的值都是唯一的。例如,在图8.9的二叉搜索树中,节点8的下一个节点是节点9,节点11的下一个节点是null。 分析&#xf…

Qt封装的Halcon显示控件,支持ROI绘制

前言 目前机器视觉ROI交互控件在C#上做的比较多,而Qt上做的比较少,根据作者 VSQtHalcon——显示图片,实现鼠标缩放、移动图片的文章,我在显示和移动控件的基础上,增加了ROI设置功能,并封装成了一个独立的Q…

领星ERP如何无需API开发轻松连接OA、电商、营销、CRM、用户运营、推广、客服等近千款系统

领星ERP(LINGXING)是一款专业的一站式亚马逊管理系统,帮助卖家构建完整的数据化运营闭环。,致力于为跨境电商卖家提供精细化运营和业财一体化的解决方案。 官网:https://erp.lingxing.com 集简云无代码集成平台&…

轻量封装WebGPU渲染系统示例<13>- 屏幕空间后处理效果(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/main/src/voxgpu/sample/ScreenPostEffect.ts 此示例渲染系统实现的特性: 1. 用户态与系统态隔离。 细节请见:引擎系统设计思路 - 用户态与系统态隔离-CSDN博客 2. 高频调用与低频调用隔离。…

轧钢厂安全生产方案:AI视频识别安全风险智能监管平台的设计

一、背景与需求 轧钢厂一般都使用打包机对线材进行打包作业,由于生产需要,人员需频繁进入打包机内作业,如:加护垫、整包、打包机检修、调试等作业。在轧钢厂生产过程中,每个班次生产线材超过300件,人员在一…

腾讯云优惠券是什么?腾讯云优惠券怎么领取?

腾讯云是腾讯集团倾力打造的云计算品牌,为了吸引用户上云,经常推出各种优惠活动,其中就包括腾讯云优惠券。 1、腾讯云优惠券解释说明 腾讯云优惠券是腾讯云的一种优惠凭证,包括代金券和折扣券,领券之后新购、续费、升…

证明char是定长的?

证明char是定长的? 大部分博客都在讲解char和varchar区别的时候都谈到char为定长,varchar为变长。 但是怎么证明char为定长呢? 下面是我证明的过程。 创建CHAR列:首先,创建一个CHAR列,指定其长度。例如&…

基于Tensorflow卷积神经网络玉米病害识别系统(UI界面)

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 Tensorflow是一个流行的机器学习框架,可用于训练和部署各种人工智能模型。玉米病害识别系统基于Tensorf…

毕业设计-课程设计-基于python+django+vue开发的外卖点餐网站

文章目录 源码下载地址项目介绍项目功能界面预览项目备注毕设定制,咨询 源码下载地址 点击下载源码 项目介绍 该系统是基于pythondjango开发的外卖点餐系统。适用场景:大学生、课程作业、毕业设计。学习过程中,如遇问题可以在github给作者…

【音视频 | opus】opus编解码库(opus-1.4)详细介绍以及使用——附带解码示例代码

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…

答题测评考试小程序的效果如何

在线答题系统是一种在线练习、考试、测评的智能答题系统,适用于企业培训、测评考试、知识竞赛、模拟考试等场景,管理员可任意组题、随机出题,答题者成功提交后,系统自动判分。 多种题目类型,两种答题模式 练习模式&a…

搭建Qt5.7.1+kylinV10开发环境、运行环境

1.下载Qt源码 Index of / 2.编译Qt 解压缩qt-everywhere-opensource-src-5.7.1.tar.gz 进入到qt-everywhere-opensource-src-5.7.1/qtbase/mkspecs这个目录下, 2.1找到以下目录 复制他,然后改名linux-x86-arrch64,博主这里名字取的有些问…

go测试库之apitest

📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢交流讨论:欢迎加入我们一起学习!📢资源分享:耗时200小时精选的「软件测试」资…

使用Python 脚自动化操作服务器配置

“ 有几十台特殊的服务器,没有合适的批量工具只能手动,要一个一个进行点击设置很耗费时间呀\~”,使用 Python 的简单脚本,即可模拟鼠标键盘进行批量作业 01 — 自动化示例 以某服务器中的添加用户权限为例,演示过程皆未触碰鼠标…

Git https方式拉的代码IDEA推送代码报错

报错信息 fatal: could not read Username for ‘https://codehub-cn-south-1.devcloud.huaweicloud.com’: No such file or directory 18:18:39.885: [recovery_pattern] git -c credential.helper -c core.quotepathfalse -c log.showSignaturefalse push --progress --porc…

LCR 166.珠宝的最高价值 + 动态规划 + 记忆化搜索 + 递推 + 空间优化

LCR 166. 珠宝的最高价值 - 力扣(LeetCode) 现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为: 只能从架子的左上角开始拿珠宝每次可以移动到右侧或下侧的相邻位置到达珠宝架子的右下…

git生成gitee和github两个不同的公钥

配置多个公钥 Windows 用户建议使用 Windows PowerShell 或者 Git Bash,在 命令提示符 下无 cat 和 ls 命令。 1、生成公钥文件: 通过命令 ssh-keygen 生成 SSH Key: ssh-keygen -t rsa -C "Gitee SSH Key" -f ~/.ssh/gitee_be…