铲特-姬劈蹄的N种用法(持续更新中。。。)

目录

  • 前言
  • 一、语法更正
  • 二、文本翻译
  • 三、语言转换
    • 3-1、Python-->JAVA
  • 四、代码解释-1
  • 五、代码解释-2
  • 六、修复代码错误
  • 七、作为百科全书
  • 八、信息提取
  • 九、好友聊天
  • 十、创意生成器
    • 10-1、VR和密室结合
    • 10-2、再结合AR
  • 十一、采访问题
    • 11-1、采访问题清单
    • 11-2、采访问题清单并给出相应答案
  • 十二、论文大纲
    • 12-1、创建论文大纲
    • 12-2、解释大纲内容
  • 十三、故事创作
    • 13-1、爱情故事
    • 13-2、恐怖故事
  • 十四、问题类比
  • 十五、创建SQL需求
  • 十六、情感分析
  • 十七、将产品描述转变为广告
  • 十八、关键字提取
  • 十九、闲聊机器人
  • 二十、总结


前言

当今的ChatGPT是一个强大的语言模型,它可以帮助您创建出色的产品并提高您的业务成功率。ChatGPT利用大规模的自然语言处理和机器学习算法,可以进行自然而流畅的对话,理解自然语言问题和回答。您可以使用ChatGPT来建立智能客服、智能助手、文本自动补全、语音识别和机器翻译等多种产品。ChatGPT可以快速适应新的数据和新的场景,使用ChatGPT,您可以轻松实现个性化、高效率和全天候的服务。让ChatGPT帮助您推动业务的增长!

一、语法更正

用途:文章、论文等润色。
在这里插入图片描述

二、文本翻译

用途:日常学习、商务翻译等。
在这里插入图片描述

三、语言转换

3-1、Python–>JAVA

用途:工作用途,不同语言工程师之间的合作,更加方便。
在这里插入图片描述

import numpy as np
import plotly.express as pxdef thresholding_algo(y, lag, threshold):""":param y: 输入列表:param lag: 滑动窗口大小:param threshold: 调节系数,用于调节容忍范围的大小。:return:"""# signals:信号列表signals = np.zeros(len(y))avgFilter = np.zeros(len(y))# 初始化平均值列表、差值列表avgFilter[lag - 1] = np.mean(y[0:lag])dif_li = [0] * len(y)for i in range(lag, len(y)):if i < len(y) - lag - 30:for j in range(i + 11, len(y)):if y[j] >= y[i - 1]:breakif j >= len(y) - 30:back = y[i - 1]else:back = np.mean(y[j + 11:j + 20 + lag])else:back = y[i - 1]# 前后均值差值计算tmp = abs(back - avgFilter[i - 1])dif = (tmp if tmp > 1 else 1)if abs(y[i] - avgFilter[i - 1]) > dif * threshold:signals[i] = (1 if y[i] > avgFilter[i - 1] else -1)avgFilter[i] = np.mean(y[(i - lag):i])y[i] = avgFilter[i - 1]else:signals[i] = 0avgFilter[i] = np.mean(y[(i - lag):i])dif_li[i] = difreturn dict(signals=np.asarray(signals),avgFilter=np.asarray(avgFilter),y=np.asarray(y),dif=np.asarray(dif_li),)

在这里插入图片描述

public static Map<String, double[]> thresholding_algo(double[] y, int lag, double threshold) {double[] signals = new double[y.length];double[] avgFilter = new double[y.length];Arrays.fill(avgFilter, 0.0);avgFilter[lag - 1] = mean(Arrays.copyOfRange(y, 0, lag));double[] dif_li = new double[y.length];Arrays.fill(dif_li, 0.0);for (int i = lag; i < y.length; i++) {int j;if (i < y.length - lag - 30) {for (j = i + 11; j < y.length; j++) {if (y[j] >= y[i - 1]) {break;}}double back;if (j >= y.length - 30) {back = y[i - 1];} else {back = mean(Arrays.copyOfRange(y, j + 11, j + 20 + lag));}} else {back = y[i - 1];}double tmp = Math.abs(back - avgFilter[i - 1]);double dif = tmp > 1 ? tmp : 1;if (Math.abs(y[i] - avgFilter[i - 1]) > dif * threshold) {signals[i] = y[i] > avgFilter[i - 1] ? 1 : -1;avgFilter[i] = mean(Arrays.copyOfRange(y, i - lag, i));y[i] = avgFilter[i - 1];} else {signals[i] = 0;avgFilter[i] = mean(Arrays.copyOfRange(y, i - lag, i));}dif_li[i] = dif;}Map<String, double[]> result = new HashMap<>();result.put("signals", signals);result.put("avgFilter", avgFilter);result.put("y", y);result.put("dif", dif_li);return result;
}private static double mean(double[] array) {double sum = 0.0;for (double d : array) {sum += d;}return sum / array.length;
}

四、代码解释-1

用途:当我们来到一家新的公司,发现前任工程师留下了一摊谁都看不懂的代码,这时候,如果有个人能帮我们解释一下这些代码是什么意思,那简直不要太开心。
在这里插入图片描述

def Fusion_algorithm(y_list):"""最终的融合算法1、第一次遍历列表: 处理掉小于上一个值的点,使其等于上一个值。2、第二次使用z-score来处理异常点:一种基于统计方法的时序异常检测算法借鉴了一些经典的统计方法,比如Z-score和移动平均线该算法将时间序列中的每个数据点都看作是来自一个正态分布,通过计算每个数据点与其临接数据点的平均值和标准差,可以获得Z-score并将其用于检测异常值,将z-score大于3的数据点视为异常值,缺点:如果异常点太多,则该算法的准确性较差。3:param y_list: 传入需要处理的时间序列:return:"""# 第一次处理for i in range(1, len(y_list)):difference = y_list[i] - y_list[i - 1]if difference <= 0:y_list[i] = y_list[i - 1]# 基于突变检测的方法:如果一个数据点的值与前一个数据点的值之间的差异超过某个阈值,# 则该数据点可能是一个突变的异常点。这种方法需要使用一些突变检测算法,如Z-score突变检测、CUSUM(Cumulative Sum)# else:#     if abs(difference) > 2 * np.mean(y_list[:i]):#         y_list[i] = y_list[i - 1]# 第二次处理# 计算每个点的移动平均值和标准差ma = np.mean(y_list)# std = np.std(np.array(y_list))std = np.std(y_list)# 计算Z-scorez_score = [(x - ma) / std for x in y_list]# 检测异常值for i in range(len(y_list)):# 如果z-score大于3,则为异常点,去除if z_score[i] > 3:print(y_list[i])y_list[i] = y_list[i - 1]return y_list

在这里插入图片描述

五、代码解释-2

备注:上一个代码解释,我们可以看到,答案或许受到了代码中注释的影响,我们删掉注释,再来一次。对于解释中一些不懂的点,我们可以连续追问!

在这里插入图片描述

import numpy as np
from sklearn.ensemble import IsolationForest
import plotly.express as px
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
import jsondef Fusion_algorithm(y_list):for i in range(1, len(y_list)):difference = y_list[i] - y_list[i - 1]if difference <= 0:y_list[i] = y_list[i - 1]# else:#     if abs(difference) > 2 * np.mean(y_list[:i]):#         y_list[i] = y_list[i - 1]ma = np.mean(y_list)std = np.std(y_list)z_score = [(x - ma) / std for x in y_list]for i in range(len(y_list)):if z_score[i] > 3:print(y_list[i])y_list[i] = y_list[i - 1]return y_list

在这里插入图片描述
在这里插入图片描述

六、修复代码错误

用途:写完一段代码后发现有错误?让chatGPT来帮你!
在这里插入图片描述

### Buggy Python
import Random
a = random.randint(1,12)
b = random.randint(1,12)
for i in range(10):question = "What is "+a+" x "+b+"? "answer = input(question)if answer = a*bprint (Well done!)else:print("No.")

在这里插入图片描述

七、作为百科全书

用途:chatGPT可以解释你所有的问题!但是列出小说这个功能有些拉跨,经过测试只有科幻小说列的还可以,其他类型不太行,可能chatgpt训练工程师是个科幻迷!
在这里插入图片描述

八、信息提取

用途:作为自然语言处理界的大模型,怎么能少得了信息提取呢?
在这里插入图片描述

九、好友聊天

用途:输入对方性格模拟聊天,这方面功能不太完善,可能有新鲜玩法我还没有挖掘出来。
在这里插入图片描述
在这里插入图片描述

十、创意生成器

用途:是不是常常会在创新上遇到思维瓶颈不知道怎么做?不要担心,让chatGPT帮你生成创意!

10-1、VR和密室结合

在这里插入图片描述

10-2、再结合AR

在这里插入图片描述

十一、采访问题

用途: 可能您是一个媒体工作者,采访问题不知道怎么写?chatGPT可以帮您解决。

11-1、采访问题清单

在这里插入图片描述

11-2、采访问题清单并给出相应答案

在这里插入图片描述

十二、论文大纲

用途: 这个功能对于研究生简直不要太爽了,一直在郁闷大纲怎么写,直接列出来大纲简直帮了我天大的忙!对于大纲中不理解的点,直接要求chatGPT给出进一步解释。代码也可以有!那一章的内容不太会写,直接让chatGPT安排,这样,一篇论文很快就写出来啦!

12-1、创建论文大纲

在这里插入图片描述

12-2、解释大纲内容

在这里插入图片描述

class PBA(nn.Module):def __init__(self, PerformanceThreshold, DistributionType, AttentionWeightRange):super(PBA, self).__init__()self.PerformanceThreshold = PerformanceThresholdself.DistributionType = DistributionTypeself.AttentionWeightRange = AttentionWeightRangedef forward(self, input, performance_scores):# 计算注意力分数attention_scores = []for i in range(len(input)):if performance_scores[i] > self.PerformanceThreshold:attention_scores.append(performance_scores[i])else:attention_scores.append(0.0)# 将性能分数映射到注意力权重if self.DistributionType == "softmax":attention_weights = F.softmax(torch.tensor(attention_scores), dim=0)elif self.DistributionType == "sigmoid":attention_weights = torch.sigmoid(torch.tensor(attention_scores))else:raise ValueError("Unknown distribution type: {}".format(self.DistributionType))# 缩放注意力权重到指定范围attention_weights = attention_weights * (self.AttentionWeightRange[1] - self.AttentionWeightRange[0]) + self.AttentionWeightRange[0]# 计算加权输入weighted_input = torch.mul(input, attention_weights.unsqueeze(1).expand_as(input))output = torch.sum(weighted_input, dim=0)return output

十三、故事创作

用途: 这个功能真的太太太棒了,以后我自己列提纲出来就可以写小说啦!

13-1、爱情故事

在这里插入图片描述

13-2、恐怖故事

在这里插入图片描述
在这里插入图片描述

十四、问题类比

用途: 当你想要做一个比喻时,这是一个很棒的功能。
在这里插入图片描述

十五、创建SQL需求

用途: 写SQL有时候挺头疼的,想好久想不起来。

在这里插入图片描述

十六、情感分析

用途: 这个功能让我想起来在之前公司做的情感分析任务了。
在这里插入图片描述

十七、将产品描述转变为广告

用途: 这个功能对于商家来说太棒了。
在这里插入图片描述

十八、关键字提取

用途: NLP任务的重要作用,关键字提取!
在这里插入图片描述

十九、闲聊机器人

用途:这个不多说了,用来闲聊体验感真的很不错。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


二十、总结

emmm,今天白嫖次数太多了,request请求被禁止了,那就改天再请求啦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/18.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT百科全书(全网最全面)

引言 ChatGPT是什么&#xff1f; ChatGPT是一款先进的自然语言处理&#xff08;NLP&#xff09;模型&#xff0c;由OpenAI开发和维护。它基于OpenAI的第四代生成预训练Transformer&#xff08;GPT-4&#xff09;架构&#xff0c;旨在通过深度学习技术理解和生成人类语言。Chat…

几款强大的工具

&#x1f4ac; 如果文章对你有帮助&#xff0c;欢迎关注、点赞、收藏和订阅专栏哦 为使用人工智能编程而构建的编辑器&#xff0c;一款人工智能编程软件、智能Ai代码生成工具。提高客户服务水平&#xff1a;它可以通过自然语言处理技术&#xff0c;快速、准确地回答客户的问题…

SpringCloud(五)Gateway 路由网关

一、路由网关 官网地址&#xff1a;https://docs.spring.io/spring-cloud-gateway/docs/current/reference/html/ 我们需要连接互联网&#xff0c;那么就需要将手机或是电脑连接到家里的路由器才可以&#xff0c;而路由器则连接光猫&#xff0c;光猫再通过光纤连接到互联网&a…

基于C语言设计的足球信息查询系统

完整资料进入【数字空间】查看——baidu搜索"writebug" 需求分析与概要设计 2.1 项目说明 我们小组的选题主要是面向足球爱好者&#xff0c;在普通社交软件的基础之上&#xff0c;围绕足球的主题展开设计&#xff0c;以便于他们能够更好的交流相关的话题&#xff…

python selenium.webdriver 爬取政策文件

文章目录 获取文章链接批量爬取政策文件应用selenium爬取文件信息数据处理导出为excel 获取文章链接 获取中央人民政府网站链接&#xff0c;进入国务院政策文件库&#xff0c;分为国务院文件和部门文件&#xff08;发改委、工信部、交通运输部、市场监督局、商务部等&#xff…

C语言-排序,初识指针

目录 【1】冒泡排序&#xff08;从小到大&#xff09; 【2】选择排序 【3】二维数组 【4】指针 【5】指针修饰 【6】大小端 【7】初见二级指针 练习&#xff1a; 【1】冒泡排序&#xff08;从小到大&#xff09; #include <stdio.h> //数组哪里的\0?自己和字符串…

异步任务——CompletabelFuture

本专栏学习内容又是来自尚硅谷周阳老师的视频 有兴趣的小伙伴可以点击视频地址观看 在学习CompletableFuture之前&#xff0c;必须要先了解一下Future Future 概念 Future接口&#xff08;FutureTask实现类&#xff09;定义了操作异步任务执行的一些方法&#xff0c;如获取异…

Android应用启动全流程分析(源码深度剖析)

作者&#xff1a;努比亚技术团队 源码来源&#xff1a;努比亚技术团队 1.前言 从用户手指点击桌面上的应用图标到屏幕上显示出应用主Activity界面而完成应用启动&#xff0c;快的话往往都不需要一秒钟&#xff0c;但是这整个过程却是十分复杂的&#xff0c;其中涉及了Android系…

【java】【基础2】程序流程控制

目录 一、最经典的三种执行顺序 二、分支结构 2.1 if 2.2 switch 2.3 if与switch区别 三、循环结构 3.1 for循环 3.2 while循环 3.3 do-while循环 3.4 三种循环区别 3.5 补充知识&#xff1a;死循环 3.6 补充知识&#xff1a;循环嵌套 四、跳转关键字&#xff1a;br…

自建DNSlog服务器

DNSlog简介 在某些情况下&#xff0c;无法利用漏洞获得回显。但是&#xff0c;如果目标可以发送DNS请求&#xff0c;则可以通过DNS log方式将想获得的数据外带出来。 DNS log常用于以下情况&#xff1a; SQL盲注无回显的命令执行无回显的SSRF 网上公开提供dnslog服务有很多…

MySQL 主从复制与读写分离

概念 主从复制与读写分离的意义 企业中的业务通常数据量都比较大&#xff0c;而单台数据库在数据存储、安全性和高并发方面都无法满足实际的需求&#xff0c;所以需要配置多台主从数据服务器&#xff0c;以实现主从复制&#xff0c;增加数据可靠性&#xff0c;读写分离&#x…