基于梯度算法的无人机航迹规划-附代码

基于梯度算法的无人机航迹规划

文章目录

  • 基于梯度算法的无人机航迹规划
    • 1.梯度搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用梯度算法来优化无人机航迹规划。

1.梯度搜索算法

梯度算法原理请参考:https://blog.csdn.net/u011835903/article/details/122156112

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得梯度搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用梯度算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,梯度算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/180213.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

汽车标定技术(三)--XCP协议如何支持测量功能

目录 1. 概述 2. 测量方式 -- Poll 3. 测量方式 -- DAQ 3.1 ODT概念模型 3.2 DAQ List概念 3.3 ODT 绝对编号和相对编号 3.4 静态DAQ和动态DAQ模式 (1)静态DAQ (2)动态DAQ 4.小结 1. 概述 在该系列的首篇文章汽车标定技…

Sybase PowerDesigner 16.7.7.7536 Crack

Power Designer 是Sybase公司的CASE工具集,使用它可以方便地对管理信息系统进行分析设计,他几乎包括了数据库模型设计的全过程。利用Power Designer可以制作数据流程图、概念数据模型、物理数据模型,还可以为数据仓库制作结构模型&#xff0c…

链式二叉树的基本操作和相关OJ题训练(建议收藏!!!)

💓博主csdn个人主页:小小unicorn ⏩专栏分类:数据结构&C 🚚代码仓库:小小unicorn的代码仓库🚚 🌹🌹🌹关注我带你学习编程知识 链式二叉树基本操作 二叉树节点设置二叉…

SpringBoot集成Swagger接口文档/测试

文章目录 Swagger 介绍Swagger 使用常用注解 Swagger 介绍 使用 Swagger 你只需要按照它的规范去定义接口及接口相关的信息,就可以做到生成接口文档,以及在线接口调试页面。官网:https://swagger.io/ Knife4j 是为 Java MVC 框架集成 Swagg…

YOLOv5论文作图教程(2)— 软件界面布局和基础功能介绍

前言:Hello大家好,我是小哥谈。通过上一节课的学习,相信大家都已成功安装好软件了,本节课就给大家详细介绍一下Axure RP9软件的界面布局及相关基础功能,希望大家学习之后能够有所收获!🌈 前期回顾: YOLOv5论文作图教程(1)— 软件介绍及下载安装(包括软件包+下载安…

服务器经常被攻击的原因

很多中小型企业都是选择虚拟主机服务器,是把一个服务器分成很多个给很多企业一起共用,可能同一个 IP服务器上就有很多个不同企业的网站,这个时候如果跟你同一个IP服务器的网站遭到DDoS攻击,就很有可能会影响到你的网站也无法正常访…

Vue3问题:如何实现组件拖拽实时预览功能?

前端功能问题系列文章,点击上方合集↑ 序言 大家好,我是大澈! 本文约3000字,整篇阅读大约需要5分钟。 本文主要内容分三部分,第一部分是需求分析,第二部分是实现步骤,第三部分是问题详解。 …

云计算的思想、突破、产业实践

文章目录 📕我是廖志伟,一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作者、产品软文创造者、技术文章评审老师、问卷调查设计师、个人社区创始人、开源项目贡献者。🌎跑过十五…

教你怎么用Python每天自动给女朋友免费发短信

今天的教程就是教大家怎么发送免费短信给女朋友。 发送短信接口,我知道的常见的有两个平台,一个是 twilio,可以免费发短信 500 条,可发任意信息,一个是腾讯云,可以免费发短信 100 条,需要申请短…

一文搞懂设计模式之工厂模式

大家好,我是晴天,本周将同大家一起学习设计模式系列的第二篇文章——工厂模式,我们将依次学习简单工厂模式,工厂方法模式和抽象工厂模式。拿好纸和笔,我们现在开始啦~ 前言 我们在进行软件开发的时候,虽然…

driver.find_element()用法

driver.find_element()用于在Web页面中定位单个元素。它是Selenium WebDriver库中的 一种方法。该方法接受一个定位器(locator)和一个值作为参数,用于指定要查找的元素 位置。下面是具体的用法和一些例子: 通过ID定位元素&#x…

虚拟机vmware使用桥接方式联网设置

步骤:虚拟机设置----》网络适配器---->桥接模式 这样设置好;只是这样设置是无法联网的 现在进入到虚拟机内部----->电机右上角的”网络连接“(wired connection)(没错就是wired connection 虽然是连接WiFi热点但…

【实战Flask API项目指南】之二 Flask基础知识

实战Flask API项目指南之 Flask基础知识 本系列文章将带你深入探索实战Flask API项目指南,通过跟随小菜的学习之旅,你将逐步掌握Flask 在实际项目中的应用。让我们一起踏上这个精彩的学习之旅吧! 前言 当小菜踏入Flask后端开发的世界&…

零日漏洞预防

零日漏洞,是软件应用程序或操作系统(OS)中的意外安全漏洞,负责修复该漏洞的一方或供应商不知道该漏洞,它们仍然未被披露和修补,为攻击者留下了漏洞,而公众仍然没有意识到风险。 零日攻击是如何…

【css3】涟漪动画

效果展示 dom代码 <div class"mapSelfTitle66"><div></div> </div> 样式代码 .mapSelfTitle66{width:120px;height:60px;position: relative;&>div{width:100%;height:100%;background: url("~/assets/images/video_show/err…

手写数字识别--神经网络实验

实验源码自取&#xff1a; 我自己搞的代码&#xff0c;预测精度才94% 神经网络实验报告源码.zip - 蓝奏云 老师给的实验源码答案和资料&#xff0c;预测精度高达99% 深度学习实验报告.zip - 蓝奏云 上深度学习的课程&#xff0c;老师布置了一个经典的实验报告&#xff0c;我做…

利用移动互联、物联网、智能算法、地理信息系统、大数据分析等信息技术开发的智慧工地云平台源码

智慧工地是指利用移动互联、物联网、智能算法、地理信息系统、大数据挖掘分析等信息技术&#xff0c;提高项目现场的“人•机•料•法•环•安”等施工要素信息化管理水平&#xff0c;实现工程施工可视化智能管理&#xff0c;并逐步实现绿色生态建造。 技术架构&#xff1a;微…

数据分析实战 - 2 订单销售数据分析(pandas 进阶)

题目来源&#xff1a;和鲸社区的题目推荐&#xff1a; 刷题源链接&#xff08;用于直接fork运行 https://www.heywhale.com/mw/project/6527b5560259478972ea87ed 刷题准备 请依次运行这部分的代码&#xff08;下方4个代码块&#xff09;&#xff0c;完成刷题前的数据准备 …

PYTHON学习

元组不可修改&#xff1a; 元组支持下标索引。 字符串也是容器&#xff0c;不支持修改。

python加上ffmpeg实现音频分割

前言: 这是一个系列的文章,主要是使用python加上ffmpeg来对音视频文件进行处理,包括音频播放、音频格式转换、音频文件分割、视频播放等。 系列文章链接: 链接1: python使用ffmpeg来制作音频格式转换工具(优化版) 链接2:<Python>PyQt5+ffmpeg,简单视频播放器的编写(…