RPC 原理详解

文章目录

    • 什么是 RPC
    • RPC 基本原理
      • RPC核心功能
      • 服务寻址
      • 数据编解码
      • 网络传输
      • 一次RPC的调用过程
    • 实践
      • 基于HTTP协议的RPC
      • 基于TCP协议的RPC

什么是 RPC

RPC(Remote Procedure Call),即远程过程调用,它允许像调用本地服务一样调用远程服务。是一种服务器-客户端(Client/Server)模式。

  • 远程:指的是需要经过网络的,而不是应用内部、机器内部进行的。
  • 过程:也就是方法。

那“远程过程调用”,就是:可以跨过一段网络,调用另外一个网络节点上的方法。以上就是对远程过程调用的简单理解。

RPC 调用分以下两种:

  1. 同步调用:客户方等待调用执行完成并返回结果。
  2. 异步调用:客户方调用后不用等待执行结果返回,但依然可以通过回调通知等方式获取返回结果。 若客户方不关心调用返回结果,则变成单向异步调用,单向调用不用返回结果。

异步和同步的区分在于是否等待服务端执行完成并返回结果。

RPC 基本原理

RPC核心功能

知道什么是RPC以后就会发现,RPC需要解决一些问题:

  1. 既然是远程调用,那么客户端如何知道服务端的地址?
  2. 如果客户端和服务端使用的是不同语言写的程序,那么参数该如何表达和解析?
  3. 如何进行网络传输?

这三个问题的解决方案也是RPC的核心功能:服务寻址、数据编解码和网络传输。

服务寻址

如果是本地调用,被调用的方法在同一个进程内,操作系统或者是虚拟机可以去地址空间去找;但是在远程调用中,这是行不通的,因为两个进程的地址空间是完全不一样的,肯定也无法知道远端的进程在那。

如果要想实现远程调用,我们需要对服务消费者和服务提供者两者进行约束:在远程过程调用中所有的函数都必须有一个 ID,这个 ID 在整套系统中是唯一存在确定的。服务消费者在做远程过程调用时,发送的消息体中必须要携带这个 ID。服务消费者和服务提供者分别维护一个函数和 ID 的对应表。当服务消费者需要进行远程调用时,它就查一下这个表,找出对应的 ID,然后把它传给服务端,服务端也通过查表,来确定客户端需要调用的函数,然后执行相应函数的代码就行。

服务寻址的实现方式有很多种,常见的是:服务注册中心。要调用服务,首先你需要一个服务注册中心去查询对方服务都有哪些实例,然后根据负载均衡策略择优选一。

服务注册
  1. 从服务提供者的角度看:当提供者服务启动时,需要自动向注册中心注册服务;当提供者服务停止时,需要向注册中心注销服务;提供者需要定时向注册中心发送心跳。如果一段时间未收到来自提供者的心跳后,注册中心会判定提供者已经停止服务,并从注册中心下架对应的服务。
  2. 从调用者的角度看:调用者启动时订阅注册中心的消息并从注册中心获取提供者的地址;当有提供者上线或者下线时,注册中心会告知到调用者;调用者下线时,取消订阅。

数据编解码

对计算机网络稍微有一点熟悉的同学都知道,数据在网络中传输都是二进制的:01010101010101010,类似这种,只有二进制数据才能在网络间传。选择好的序列化协议特别重要,一个好的序列化协议能减少序列化数据带来的性能损耗。常见的RPC序列化协议如下:

  • XML(Extensible Markup Language)是一种常用的序列化和反序列化协议,具有跨机器,跨语言等优点。狭义web service就是基于SOAP消息传递协议(一个基于XML的可扩展消息信封格式)来进行数据交换的。

  • JSON(Javascript Object Notation)起源于弱类型语言Javascript, 是采用"Attribute-value"的方式来描述对象协议。与XML相比,其协议比较简单,解析速度比较快。

  • Protocol Buffers 是google提供的一个开源序列化框架,是一种轻便高效的结构化数据存储格式,可以用于结构化数据串行化,或者说序列化。它很适合做数据存储或 RPC 数据交换格式。可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式。同 XML 相比, Protobuf 的主要优点在于性能高。它以高效的二进制方式存储,比 XML 小 3 到 10 倍,快 20 到 100 倍。

以上每种协议都有其优点和适用场景,需要根据具体的需求和环境来选择合适的协议。

网络传输

提起网络传输大家脑海里肯定马上就能想到 TCP/IP四层模型、OSI 七层模型,那通常 RPC 会选择那一层作为传输协议呢?

在回答这个问题前,先来看下 RPC 需要网络传输实现什么样的功能。客户端的数据经过序列化后,就需要通过网络传输到服务端。网络传输层需要把前面说的函数 ID 和序列化后的参数字节流传给服务端,服务端处理完然后再把序列化后的调用结果传回客户端。

原则上只要能实现上面这个功能的都可以作为传输层来使用,具体协议没有限制。我们先来看下 TCP 协议,TCP 连接可以是按需连接,需要调用的时候就先建立连接,调用结束后就立马断掉,也可以是长连接,客户端和服务器建立起连接之后保持长期持有,不管此时有无数据包的发送,可以配合心跳检测机制定期检测建立的连接是否存活有效。

由此可见 TCP 的性能确实很好,因此市面上大部分 RPC 框架都使用 TCP 协议,但也有少部分框架使用其他协议,比如 gRPC 用的是 HTTP2 来实现。

一次RPC的调用过程

忽略服务端向注册中心注册服务的流程,下面是客户端和服务端之间进行一次RPC调用的完整过程。

image-20231102193528606
  1. 客户端(Client)通过本地调用的方式调用服务(以接口方式调用);
  2. 客户端存根(Client Stub)接收到调用请求后负责将方法、入参等信息进行组装序列化成能够进行网络传输的消息体(将消息体对象序列化为二进制流);
  3. 客户端存根(Client Stub)找到远程的服务地址,并且将消息通过网络发送给服务端(通过sockets发送消息);
  4. 服务端存根(Server Stub)收到消息后进行反序列化操作,即解码(将二进制流反序列化为消息对象);
  5. 服务端存根(Server Stub)通过解码结果调用本地的服务进行相关处理;
  6. 服务端(Server)将处理结果返回给服务端存根;
  7. 服务端存根(Server Stub)序列化处理结果(将结果消息对象序列化为二进制流);
  8. 服务端存根(Server Stub)将序列化结果通过网络发送至客户端(通过sockets发送消息);
  9. 客户端存根(Server Stub)接收到消息,进行反序列化解码(将结果二进制流反序列化为消息对象);
  10. 客户端得到最终的结果。

这里面有一个词语:存根(Stub)。这里存根的作用我认为和Linux内核里面的库打桩机制有点类似。在Linux中,一个"桩"(stub)就是一个程序或函数的临时替代品,"桩"可以模拟出类似于真实的程序或函数的行为。所以,在RPC中,客户端存根和服务器存根的作用是隐藏RPC底层机制的复杂性,让开发者可以像调用本地函数一样调用远程函数。

实践

基于HTTP协议的RPC

服务端代码:

type Args struct {A, B int
}type Compute intfunc (c *Compute) Add(args *Args, reply *int) error {*reply = args.A + args.Breturn nil
}func main() {compute := new(Compute)rpc.HandleHTTP() // 注册 HTTP 路由// 注册 RPC 服务if err := rpc.Register(compute); err != nil {log.Fatal("Register error:", err)}listen, err := net.Listen("tcp", ":8080")if err != nil {log.Fatal("Listen error:", err)}if err = http.Serve(listen, nil); err != nil {log.Fatal("Serve error:", err)}
}

rpc库对注册的方法有一定的限制,方法必须满足签名func (t *T) MethodName(argType T1, replyType *T2) error{}

  1. 方法名必需是可导出的。
  2. 方法接收两个参数,这两个参数都是可导出的,且第二个参数必需为指针类型。
  3. 方法必需返回一个error类型的参数。

客户端代码:

type Args struct {A, B int
}func main() {client, err := rpc.DialHTTP("tcp", "localhost:8080")if err != nil {log.Fatal("dialing:", err)}args := &Args{3, 5}// 同步调用var reply1 intif err = client.Call("Compute.Add", args, &reply1); err != nil {log.Fatal("Compute error:", err)}fmt.Printf("同步调用的sum: %d\n", reply1)// 异步调用var reply2 intdivCall := client.Go("Compute.Add", args, &reply2, nil)_ = <-divCall.Done // 接收调用结果fmt.Printf("异步调用的sum: %d\n", reply2)
}

运行结果如下:

PS D:\GolandProjects\RPC\client> go run .\client.go
同步调用的sum: 8
异步调用的sum: 8

基于TCP协议的RPC

服务端代码:

type Args struct {A, B int
}type Compute intfunc (c *Compute) Add(args *Args, reply *int) error {*reply = args.A + args.Breturn nil
}func main() {compute := new(Compute)if err := rpc.Register(compute); err != nil {log.Fatal("Register error:", err)}listen, err := net.Listen("tcp", ":8080")if err != nil {log.Fatal("Listen error:", err)}rpc.Accept(listen)
}

客户端代码:

type Args struct {A, B int
}func main() {client, err := rpc.Dial("tcp", "localhost:8080")if err != nil {log.Fatal("dialing:", err)}args := &Args{6, 8}// 同步调用var reply1 intif err = client.Call("Compute.Add", args, &reply1); err != nil {log.Fatal("Compute error:", err)}fmt.Printf("同步调用的sum: %d\n", reply1)// 异步调用var reply2 intdivCall := client.Go("Compute.Add", args, &reply2, nil)_ = <-divCall.Done // 接收调用结果fmt.Printf("异步调用的sum: %d\n", reply2)
}

运行结果:

PS D:\GolandProjects\RPC\client> go run .\client.go
同步调用的sum: 14
异步调用的sum: 14

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/180725.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python基础入门例程37-NP37 不低于与不超过(运算符)

最近的博文&#xff1a; Python基础入门例程36-NP36 谁的数字大&#xff08;运算符&#xff09;-CSDN博客 Python基础入门例程35-NP35 朋友的年龄是否相等&#xff08;运算符&#xff09;-CSDN博客 Python基础入门例程34-NP34 除法与取模运算&#xff08;运算符&#xff09;…

07.Diffusion Model概述

文章目录 Diffusion Model原理Reverse ProcessDenoise模块Forward Process(Diffusion Process) 文字生成图片by Diffusion Model文字生成图像的常见套路Text EncoderFrchet Inception DistanceContrastive Language-Image Pre-Training(CLIP) DecoderGeneration Model 部分截图…

Fourier分析导论——第3章——Fourier级数的收敛性(E.M. Stein R. Shakarchi)

第 3 章 Fourier级数的收敛性(Convergence of Fourier Series) The sine and cosine series, by which one can represent an arbitrary function in a given interval, enjoy among other remarkable properties that of being convergent. This property did not escape…

【Midjourney入门教程1】Midjourney的注册、订阅

文章目录 前言一、Midjourney是什么二、Midjourney注册三、新建自己的服务器四、开通订阅 前言 AI绘画即指人工智能绘画&#xff0c;是一种计算机生成绘画的方式。是AIGC应用领域内的一大分支。 AI绘画主要分为两个部分&#xff0c;一个是对图像的分析与判断&#xff0c;即“…

行业观察:数字化企业需要什么样的数据中心

伴随着数字经济在中国乃至全球的高速发展&#xff0c;数字化转型已经成为广大企业的必经之路。而作为数字经济的核心基础设施&#xff0c;数据中心充当了接收、处理、存储与转发数据流的“中枢大脑”&#xff0c;对驱动数字经济发展和企业数字化转型起到了极为关键的重要作用。…

路由器基础(十一):ACL 配置

访问控制列表 (Access Control List,ACL) 是目前使用最多的访问控制实现技术。访问控制列表是路由器接口的指令列表&#xff0c;用来控制端口进出的数据包。ACL适用于所有的被路由协议&#xff0c;如IP、IPX、AppleTalk 等。访问控制列表可以分为基本访问控制列表和高级访问控制…

第10章_创建和管理表

文章目录 1 基础知识1.1 一条数据存储的过程1.2 标识符命名规则1.3 MySQL中的数据类型 2 创建和管理数据库2.1 创建数据库2.2 使用数据库2.3 修改数据库2.4 删除数据库代码演示 3 创建表3.1 创建方式13.2 创建方式23.3 查看数据表结构代码演示 4 修改表4.1 追加一个列4.2 修改一…

shell学习脚本05(小滴课堂)

可以对海量的数据进行提取。 -v对提取的内容进行取反。 -n显示出行号。 -w精确匹配&#xff1a; -i:忽略大小写&#xff1a; -E正则匹配&#xff1a; cut命令&#xff1a; -d指定分隔符&#xff0c;-f指定截取区域&#xff1a; 截取第一列到第三列&#xff1a; 截取第二列到最…

在Python中添加Selenium Web Driver等待

本文将介绍在Python中在Selenium Web驱动程序中添加等待的示例。 Python Selenium Web 驱动程序等待 大多数 Web 应用程序都使用 AJAX 技术。 因此&#xff0c;网页上存在的不同元素需要不同的时间间隔才能完全上传&#xff0c;因为硒在网页上存在之前无法找到任何文本。 我们…

系列六、Mybatis的一级缓存

一、概述 Mybatis一级缓存的作用域是同一个SqlSession&#xff0c;在同一个SqlSession中执行两次相同的查询&#xff0c;第一次执行完毕后&#xff0c;Mybatis会将查询到的数据缓存起来&#xff08;缓存到内存中&#xff09;&#xff0c; 第二次执行相同的查询时&#xff0c;会…

【ML】分类问题

分类问题 classification&#xff1a;根据已知样本特征&#xff0c;判断输入样本属于哪种已知样本类。 常用入门案例&#xff1a;垃圾邮件检测、图像分类、手写数字识别、考试通过预测。 分类问题和回归问题的明显区别&#xff1a; 分类问题的结果是非连续型标签&#xff0c…

【算法|二分查找No.1】leetcode 704. 二分查找+二分模板 leetcode 34. 在排序数组中查找元素的第一个和最后一个位置

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

C/C++ static关键字详解(最全解析,static是什么,static如何使用,static的常考面试题)

目录 一、前言 二、static关键字是什么&#xff1f; 三、static关键字修饰的对象是什么&#xff1f; 四、C 语言中的 static &#x1f34e;static的C用法 &#x1f349;static的重点概念 &#x1f350;static修饰局部变量 &#x1f4a6;static在修饰局部变量和函数的作用 &a…

【k8s】pod集群调度

调度约束 Kubernetes 是通过 List-Watch **** 的机制进行每个组件的协作&#xff0c;保持数据同步的&#xff0c;每个组件之间的设计实现了解耦。 用户是通过 kubectl 根据配置文件&#xff0c;向 APIServer 发送命令&#xff0c;在 Node 节点上面建立 Pod 和 Container。…

[SSD综述1.7] SSD接口形态: SATA、M.2、U.2、PCIe、BGA

依公知及经验整理,原创保护,禁止转载。 专栏 《SSD入门到精通系列》 <<<< 返回总目录 <<<< 前言 犹记得当年Windows 7系统体验指数中,那5.9分磁盘分数,在其余四项的7.9分面前,似乎已经告诉我们机械硬盘注定被时代淘汰。势如破竹的SSD固态硬盘,彻…

二维码智慧门牌管理系统升级:一键报错解决三大问题

文章目录 前言一、一键报错功能解决了三大问题二、提高效率和便捷性 前言 随着科技的不断发展&#xff0c;智能化管理已经深入到社会的各个角落&#xff0c;其中二维码智慧门牌管理系统在社区、酒店、写字楼等场所的应用尤为广泛。为了更好地提升管理系统效率和解决实际问题&a…

旋转图像[中等]

优质博文&#xff1a;IT-BLOG-CN 一、题目 给定一个n n的二维矩阵matrix表示一个图像。请你将图像顺时针旋转90度。你必须在原地旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。 示例 1&#xff1a; 输入&#xff1a; matrix…

设计模式之装饰模式--优雅的增强

目录 概述什么是装饰模式为什么使用装饰模式关键角色基本代码应用场景 版本迭代版本一版本二版本三—装饰模式 装饰模式中的巧妙之处1、被装饰对象和装饰对象共享相同的接口或父类2、当调用装饰器类的装饰方法时&#xff0c;会先调用被装饰对象的同名方法3、子类方法与父类方法…

【深度学习基础】专业术语汇总(欠拟合和过拟合、泛化能力与迁移学习、调参和超参数、训练集、测试集和验证集)

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

vue+asp.net Web api前后端分离项目发布部署

一、前后端项目介绍 1.前端项目是使用vue脚手架进行创建的。 脚手架版本&#xff1a;vue/cli 5.0.8 编译器版本&#xff1a;vs code 1.82.2 2.后端是一个asp.net Core Web API 项目 后端框架版本&#xff1a;.NET 6.0 编译器版本&#xff1a;vs 2022 二、发布部署步骤 第…