【入门Flink】- 05Flink运行时架构以及一些核心概念

系统架构

Flink运行时架构Standalone会话模式为例

image-20231104111417913

1)作业管理器(JobManager)

JobManager 是一个 Flink 集群中任务管理和调度的核心,是控制应用执行的主进程。每个应用都应该被唯一的 JobManager 所控制执行。

JobManger 又包含 3 个不同的组件。

(1)JobMaster

JobMaster 是 JobManager 中最核心的组件,负责处理单独的作业(Job)。JobMaster和具体的 Job 是一一对应的,多个 Job 可以同时运行在一个 Flink 集群中,每个Job都有一个自己的 JobMaster

  1. 在作业提交时,JobMaster 会先接收到要执行的应用。JobMaster 会把JobGraph转换成一个物理层面的数据流图,这个图被叫作“执行图”(ExecutionGraph),它包含了所有可以并发执行的任务。
  2. JobMaster 会向资源管理器(ResourceManager)发出请求,申请执行任务必要的资源。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的TaskManager上。

而在运行过程中 , JobMaster 会负责所有需要中央协调的操作。

(2)资源管理器(ResourceManager)

ResourceManager 主要负责资源的分配和管理,在 Flink 集群中只有一个。所谓“资源”,主要是指 TaskManager 的任务槽(task slots)。任务槽就是 Flink 集群中的资源调配单元,包含了机器用来执行计算的一组 CPU 和内存资源。每一个任务(Task)都需要分配到一个slot上执行

(3)分发器(Dispatcher)

Dispatcher 主要负责提供一个 REST 接口,用来提交应用,并且负责为每一个新提交的作业启动一个新的 JobMaster 组件。Dispatcher 也会启动一个 Web UI,用来方便地展示和监控作业执行的信息。

2)任务管理器(TaskManager)

TaskManager 是 Flink 中的工作进程,数据流的具体计算就是它来做的。Flink集群中必须至少有一个TaskManager;每一个 TaskManager 都包含了一定数量的任务槽(taskslots)。Slot 是资源调度的最小单位,slot 的数量限制了 TaskManager 能够并行处理的任务数量。

启动之后,TaskManager 会向资源管理器注册它的 slots;收到资源管理器的指令后,TaskManager 就会将一个或者多个槽位提供给 JobMaster 调用,JobMaster 就可以分配任务来执行了。 在执行过程中,TaskManager 可以缓冲数据,还可以跟其他运行同一应用的TaskManager交换数据。

核心概念

1)并行度(Parallelism)

(1)并行子任务和并行度

image-20231104112830661

Flink 执行过程中,每一个算子(operator)可以包含一个或多个子任务(operatorsubtask),这些子任务在不同的线程、不同的物理机或不同的容器中完全独立地执行。

一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。包含并行子任务的数据流,就是并行数据流

一个流程序的 并行度,可以认为就是其 所有算子中最大的并行度

上图数据流中有 source、map、window、sink 四个算子,其中sink算子的并行度为 1,其他算子的并行度都为 2。所以这段流处理程序的并行度就是2。

(2)并行度的设置

在 Flink 中,可以用不同的方法来设置并行度,它们的有效范围和优先级别也是不同的。

  • 直接代码设置

代码中在算子后跟着调用 setParallelism()方法,来设置当前算子的并行度:

stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);

调用执行环境的 setParallelism()方法,全局设定并行度:

env.setParallelism(2);

这样代码中所有算子,默认的并行度就都为 2 。

调试可以使用本地环境,自带Web UI便于调试(默认8081端口):

需要添加如下依赖:

        <dependency><groupId>org.apache.flink</groupId><artifactId>flink-runtime-web</artifactId><version>${flink.version}</version><scope>provided</scope></dependency>

注意:keyBy 不是算子,所以无法对 keyBy 设置并行度。

  • 提交应用时设置

-p 参数来指定当前应用程序执行的并行度,它的作用类似于执行环境的全局设置:

bin/flink run -m 192.168.197.130:8081 -p 2 -c com.lkl.StreamSocketWordCount ../day5-flink-1.0-SNAPSHOT.jar

在 Web UI 上提交作业,也可以在对应输入框中直接添加并行度。

image-20231104123336659

  • 配置文件中设置

直接在集群的配置文件 flink-conf.yaml 中直接更改默认并行度:

parallelism.default: 2

初始值为1。

在没有指定并行度的时候,就会采用配置文件中的集群默认并行度。在开发环境中,没有配置文件,默认并行度就是当前机器的CPU核心数

并行度设置优先级

代码:算子 > 代码:env > 提交时指定 > 配置文件

2)算子链(Operator Chain)

(1)算子间的数据传输

image-20231104151241512

一个数据流在算子之间传输数据的形式可以是一对一(one-to-one)直通(forwarding)模式,也可以是打乱重分区(redistributing)模式,具体是哪一种形式,取决于算子的种类。

1. 一对一(One-to-one,forwarding)

图中的source 和map算子,source 算子读取数据之后,可以直接发送给 map 算子做处理,它们之间不需要重新分区,也不需要调整数据的顺序。map 算子的子任务,看到的元素个数和顺序跟source算子的子任务产生的完全一样,保证着“一对一”的关系。map、filter、flatMap等算子都是这种one-to-one的对应关系。这种关系类似于 Spark 中的窄依赖

2. 重分区(Redistributing)

这种模式,数据流的分区会发生改变。比如图中的map和后面的keyBy/window算子之间,以及 keyBy/window 算子和 Sink 算子之间,都是这样的关系。

每一个算子的子任务,会根据数据传输的策略,把数据发送到不同的下游目标任务。这些传输方式都会引起重分区的过程,这一过程类似于 Spark 中的shuffle

(2)合并算子链

并行度相同的一对一(one to one)算子操作,可以直接链接在一起形成一个“大”的任务(task),这样原来的算子就成为了真正任务里的一部分,如下图所示。每个task 会被一个线程执行。这样的技术被称为“算子链”(Operator Chain)

image-20231104152204398

将算子链接成 task 是非常有效的优化:可以减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量

Flink 默认会按照算子链的原则进行链接合并,如果想要禁止合并或者自行定义,也可以在代码中对算子做一些特定的设置:

// 禁用算子链
.map(word -> Tuple2.of(word, 1L)).disableChaining();
// 从当前算子开始新链
.map(word -> Tuple2.of(word, 1L)).startNewChain()

禁用算子链,当前算子与前后算子都不能组成算子链。(一般不会禁用)

3)任务槽(Task Slots)

(1)任务槽(Task Slots)

Flink 中每一个 TaskManager 都是一个 JVM 进程,它可以启动多个独立的线程,来并行执行多个子任务(subtask)。

TaskManager 的计算资源是有限的,并行的任务越多,每个线程的资源就会越少。

为了控制并发量,需要在TaskManager 上对每个任务运行所占用的资源做出明确的划分,这就是所谓的任务槽(taskslots)

每个任务槽(task slot)其实表示了 TaskManager 拥有计算资源的一个固定大小的子集。这些资源就是用来独立执行一个子任务的。

独立内存不独立CPU(时间片轮转)

image-20231104153353299

(2)任务槽数量的设置

在 Flink 的 flink-conf.yaml 配置文件中,可以设置TaskManager 的 slot 数量,默认是 1 个 slot。

taskmanager.numberOfTaskSlots: 8

slot 目前仅仅用来隔离内存,不会涉及 CPU 的隔离。在具体应用时,可以将 slot 数量配置为机器的 CPU 核心数,尽量避免不同任务之间对CPU的竞争。

(3)任务对任务槽的共享

同一个作业中,不同任务节点(算子)的并行子任务,就可以放到同一个slot上执行。

image-20231104153855330

对于第一个任务节点source→map,它的 6 个并行子任务必须分到不同的 slot 上,而第二个任务节点keyBy/window/apply的并行子任务却可以和第一个任务节点共享 slot。

将资源密集型和非密集型的任务同时放到一个 slot 中,它们就可以自行分配对资源占用的比例,从而保证最重的活平均分配给所有的 TaskManager

slot 共享另一个好处就是允许保存完整的作业管道。即使某个TaskManager 出现故障宕机,其他节点也可以完全不受影响,作业的任务可以继续执行。

Flink 默认是允许 slot 共享的,如果希望某个算子对应的任务完全独占一个slot,或者只有某一部分算子共享 slot,也可以通过设置“slot 共享组”手动指定:(默认都是default)

.map(word -> Tuple2.of(word, 1L)).slotSharingGroup("aaa");

只有属于同一个 slot 共享组的子任务,才会开启 slot 共享;不同组之间的任务是完全隔离的,必须分配到不同的 slot 上

4)任务槽和并行度的关系

任务槽是静态的概念 , 是指 TaskManager 具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots 进行配置;而并行度是动态概念,也就是TaskManager 运行程序时实际使用的并发能力,可以通过参数 parallelism.default 进行配置。

注意

slot数量 >= job并行度(算子最大并行度),job才能运行【否则无法提交任务】

如果是yarn模式,动态申请

​ 申请TM数量 = job并行度 / 每个TM的slot数,向上取整

​ 例如session模式,刚开始0个TaskMananger(设置为3个slot),0个slot

​ 此时,提交一个job并行度为10

​ 10 / 3 向上取整,申请4个TM,使用10个slot,还剩余2个slot

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/181242.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全球首例无液氦脑磁图辅助下的胶质瘤切除手术顺利完成

近日&#xff0c;在国家重点研发计划“新型无液氦脑磁图系统研发”项目支持下&#xff0c;首都医科大学附属北京天坛医院季楠教授团队完成全球首例无液氦脑磁图运动功能区定位辅助下的胶质瘤切除手术。 手术对一例肿瘤累及运动功能区的年轻女性在术前分别利用无液氦脑磁图仪和功…

Java继承:抽取相同共性,实现代码复用

&#x1f451;专栏内容&#xff1a;Java⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、继承的概念二、继承的语法三、父类成员访问1、子类中访问父类成员变量Ⅰ、子类和父类不存在同名成员变量Ⅱ、子类和父类成员…

mysql:B+树/事务

B树 : 为了数据库量身定做的数据结构 我们当前这里的讨论都是围绕 mysql 的 innodb 这个存储引擎来讨论的 其他存储引擎可能会用到hash 作为索引,此时就只能应对这种精准匹配的情况了 要了解 B树 我们先了解 B树, B树 是 B树 的改进 B树 有时候会写作 B-树 (这里的" -…

Rust编程基础核心之所有权(上)

1.什么是所有权? Rust 的核心功能&#xff08;之一&#xff09;是 所有权&#xff08;ownership&#xff09;。虽然该功能很容易解释&#xff0c;但它对语言的其他部分有着深刻的影响。 所有程序都必须管理其运行时使用计算机内存的方式。一些语言中具有垃圾回收机制&#x…

pytorch+LSTM实现使用单参数预测,以及多参数预测(代码注释版)

开发前准备&#xff1a; 环境管理&#xff1a;Anaconda python: 3.8 显卡&#xff1a;NVIDIA3060 pytorch: 到官网选择conda版本&#xff0c;使用的是CUDA11.8 编译器&#xff1a; PyCharm 简述&#xff1a; 本次使用seaborn库中的flights数据集来做试验&#xff0c;我们通过…

ConnectionError: HTTPSConnectionPool

ConnectionError: HTTPSConnectionPool(host‘zbbfxstatic.figtingdream.com’, port443): Max retries exceeded with url: /api/cache (Caused by NewConnectionError(‘<urllib3.connection.HTTPSConnection object at 0x00000249795AD9A0>: Failed to establish a ne…

游戏开发中的“御用中介“

点击上方亿元程序员关注和★星标 引言 大家好&#xff0c;我是亿元程序员&#xff0c;一位有着8年游戏行业经验的主程。 本系列是《和8年游戏主程一起学习设计模式》&#xff0c;让糟糕的代码在潜移默化中升华&#xff0c;欢迎大家关注分享收藏订阅。 游戏开发中的"御用…

【Redis】String字符串类型-常用命令

文章目录 String字符串类型常用命令setgetMGETMSET 计数命令INCRINCRBYDECRDECRBYINCRBYFLOAT 其它命令APPENDGETRANGESETRANGESTRLEN 命令总结 String字符串类型 1&#xff09;⾸先Redis中所有的键的类型都是字符串类型 2&#xff09;字符串类型的值&#xff08;value&#…

2.2整式的加减(第1课时)——合并同类项教学及作业设计

【学习目标】 1&#xff0e;理解同类项的概念&#xff0c;并能正确辨别同类项&#xff0e; 2&#xff0e;理解合并同类项的依据是乘法分配律&#xff0c;掌握合并同类项的方法&#xff0e; 知识点归纳&#xff1a; ★合并同类项后&#xff0c;所得的项的系数是___________…

Linux学习第28天:Platform设备驱动开发(二): 专注与分散

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 三、硬件原理图分析 四、驱动开发 1、platform设备与驱动程序开发 53 /* 54 * 设备资源信息&#xff0c;也就是 LED0 所使用的所有寄存器 55 */ 56 static str…

堆叠注入 [GYCTF2020]Blacklist1

打开题目 判断注入点 输入1&#xff0c;页面回显 输入1 页面报错 输入 1 # 页面正常&#xff0c;说明是单引号的字符型注入 我们输入1; show databases; # 说明有6个数据库 1; show tables; # 说明有三个表 我们直接查看FlagHere的表结构 1;desc FlagHere&#xff1b;# 发…

【Hadoop】Apache Hadoop YARN

&#x1f984; 个人主页——&#x1f390;开着拖拉机回家_Linux,Java基础学习,大数据运维-CSDN博客 &#x1f390;✨&#x1f341; 感谢点赞和关注 &#xff0c;每天进步一点点&#xff01;加油&#xff01; 目录 一、YARN概述 二、YARN基础架构 2.1 ResourceManager&#x…

[100天算法】-有序矩阵中第K小的元素(day 58)

题目描述 给定一个 n x n 矩阵&#xff0c;其中每行和每列元素均按升序排序&#xff0c;找到矩阵中第 k 小的元素。 请注意&#xff0c;它是排序后的第 k 小元素&#xff0c;而不是第 k 个不同的元素。示例&#xff1a;matrix [[ 1, 5, 9],[10, 11, 13],[12, 13, 15] ], k …

基础知识:位运算

基础知识&#xff1a;位运算 1. 两类表达式 1. 两类表达式

展开一个结构加法等式

4a6 4a8 - - - - - 1 - 1 - - - 1 - 1 - - 1 - - 1 - - 1 - - 1 - - - - 在5-1的方向上具体展开4a64a8 25 19 19 19 19 19 19 19 25 19 19 19 19 19 19 19 1 10 10 10 10 10 10 10 1 10 10 10 10 10 10 10 …

全网最详细的【shell脚本的入门】

&#x1f3c5;我是默&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; ​ &#x1f31f;在这里&#xff0c;我要推荐给大家我的专栏《Linux》。&#x1f3af;&#x1f3af; &#x1f680;无论你是编程小白&#xff0c;还是有一定基础的程序员&#xff0c;这…

蓝桥杯每日一题2023.11.5

题目描述 方格分割 - 蓝桥云课 (lanqiao.cn) 题目分析 对于每个图我们可以从中间开始搜索&#xff0c;如果到达边界点就说明找到了一种对称的方法&#xff0c;我们可以直接对此进行答案记录每次进行回溯就会找到不同的图像&#xff0c;如果是一样的图像则算一种情况&#xff…

初识Vue 输出Hello World 及注意事项

在我们还没接触Vue之前&#xff0c;我同学常说我可以直接在元素里输出JS的表达式吗&#xff1f;肯定是不太行。当我们接触vue.js后&#xff0c;这个想法成了现实。 每当我们学习一门新的语言或者框架时&#xff0c;我们都习惯打印一个“hello world”&#xff0c;在我们vue当中…

Docker 安装ELK7.7.1

(注&#xff1a;在安装之前&#xff0c;本方法必须安装jdk1.8以上版本) (注&#xff1a;如果在虚拟机下用可以直接按方法走即可&#xff0c;如果是想进行备份后在别的机器上进行相关操作&#xff0c;必须把所有带有172.17.0.6、192.168.8.166:9200和端口号都改成你自己的方可使…

使用 curator 连接 zookeeper 集群 Invalid config event received

dubbo整合zookeeper 如图&#xff0c;错误日志 2023-11-04 21:16:18.699 ERROR 7459 [main-EventThread] org.apache.curator.framework.imps.EnsembleTracker Caller0 at org.apache.curator.framework.imps.EnsembleTracker.processConfigData(EnsembleTracker.java…