K8s:部署 CNI 网络组件+k8s 多master集群部署+负载均衡及Dashboard k8s仪表盘图像化展示管理

目录

1 部署 CNI 网络组件

1.1 部署 flannel

1.2 部署 Calico

1.3 部署 CoreDNS

2 负载均衡部署

3 部署 Dashboard


1 部署 CNI 网络组件

1.1 部署 flannel

K8S 中 Pod 网络通信:

●Pod 内容器与容器之间的通信 在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

●同一个 Node 内 Pod 之间的通信 每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0 网桥,网段相同,所以它们之间可以直接通信。

●不同 Node 上 Pod 之间的通信 Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。 要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

Overlay Network: 叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。

VXLAN: 将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

Flannel: Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。 Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 udp、vxlan、 host-GW 3种数据转发方式。

#Flannel udp 模式的工作原理: 数据从 node01 上 Pod 的源容器中发出后,经由所在主机的 docker0 虚拟网卡转发到 flannel.1 虚拟网卡,flanneld 服务监听在 flannel.1 虚拟网卡的另外一端。 Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 node01 的 flanneld 服务将原本的数据内容封装到 UDP 中后根据自己的路由表通过物理网卡投递给目的节点 node02 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel.1 虚拟网卡,之后被转发到目的主机的 docker0 虚拟网卡,最后就像本机容器通信一样由 docker0 转发到目标容器。

#ETCD 之 Flannel 提供说明: 存储管理Flannel可分配的IP地址段资源 监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

由于 udp 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 vxlan 模式差。

#vxlan 模式:

vxlan 是一种overlay(虚拟隧道通信)技术,通过三层网络搭建虚拟的二层网络,跟 udp 模式具体实现不太一样:

(1)udp模式是在用户态实现的,数据会先经过tun网卡,到应用程序,应用程序再做隧道封装,再进一次内核协议栈,而vxlan是在内核当中实现的,只经过一次协议栈,在协议栈内就把vxlan包组装好

(2)udp模式的tun网卡是三层转发,使用tun是在物理网络之上构建三层网络,属于ip in udp,vxlan模式是二层实现, overlay是二层帧,属于mac in udp

(3)vxlan由于采用mac in udp的方式,所以实现起来会涉及mac地址学习,arp广播等二层知识,udp模式主要关注路由

#Flannel vxlan 模式的工作原理: vxlan在内核当中实现,当数据包使用vxlan设备发送数据时,会打上vlxan的头部信息,在发送出去,对端解包,flannel.1网卡把原始报文发送到目的服务器。

//在 node01 节点上操作

#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中

cd /opt/
docker load -i flannel.tar
docker load -i flannel-cni-plugin.tarmkdir /opt/cni/bin -p
tar zxvf cni-plugins-linux-amd64-v1.3.0.tgz -C /opt/cni/bin

//在 master01 节点上操作

#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络

cd /opt/k8s
kubectl apply -f kube-flannel.yml kubectl get pods -A
NAMESPACE      NAME                    READY   STATUS             RESTARTS   AGE
kube-flannel   kube-flannel-ds-g7thg   1/1     Running            0          48mkubectl get nodes
NAME             STATUS   ROLES    AGE     VERSION
192.168.30.101   Ready    <none>   4h16m   v1.20.15

1.2 部署 Calico

#k8s 组网方案对比:

●flannel方案 需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

●calico方案 Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发来。

#Calico 主要由三个部分组成:

Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。

Felix:负责维护宿主机上的路由规则、FIB转发信息库等。

BIRD:负责分发路由规则,类似路由器。

Confd:配置管理组件。

#Calico 工作原理: Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则,用于接收传入的IP包。 有了这样的 veth pair 设备以后,容器发出的IP包就会通过 veth pair 设备到达宿主机,然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。 这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由,这些节点我们叫做 BGP Peer。

目前比较常用的时flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

//在 master01 节点上操作

#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络

cd /opt/k8s
vim calico.yaml
#修改里面定义Pod网络(CALICO_IPV4POOL_CIDR),与前面kube-controller-manager配置文件指定的cluster-cidr网段一样- name: CALICO_IPV4POOL_CIDRvalue: "10.244.0.0/16"kubectl apply -f calico.yamlkubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-w498v   1/1     Running   0          44m
calico-node-h2hzh                          1/1     Running   12         44m
calico-node-jphcv                          1/1     Running   0          44m

#等 Calico Pod 都 Running,节点也会准备就绪

kubectl get nodes

---------- node02 节点部署 ----------

//在 node01 节点上操作

cd /opt/
scp kubelet.sh proxy.sh root@192.168.30.102:/opt/
scp -r /opt/cni root@192.168.30.102:/opt/

//在 node02 节点上操作

#启动kubelet服务

cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.30.102

//在 master01 节点上操作

kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   10s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#通过 CSR 请求

kubectl certificate approve node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   23s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#加载 ipvs 模块

for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.30.102

#查看群集中的节点状态

kubectl get nodes

1.3 部署 CoreDNS

//在所有 node 节点上操作 #上传 coredns.tar 到 /opt 目录中

cd /opt
docker load -i coredns.tar

//在 master01 节点上操作

#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS

cd /opt/k8s
kubectl apply -f coredns.yamlkubectl get pods -n kube-system 
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

#DNS 解析测试

kubectl run -it --rm dns-test2 --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.localName:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

---------- master02 节点部署 ----------

//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点

scp -r /opt/etcd/ root@192.168.30.115:/opt/
scp -r /opt/kubernetes/ root@192.168.30.115:/opt
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.30.115:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP

vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.80.10:2379,https://192.168.80.11:2379,https://192.168.80.12:2379 \
--bind-address=192.168.30.115 \				#修改
--secure-port=6443 \
--advertise-address=192.168.30.115 \			#修改
......

//在 master02 节点上启动各服务并设置开机自启

systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态

ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名
//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

2 负载均衡部署

//配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)

在lb01、lb02节点上操作

//配置nginx的官方在线yum源,配置本地nginx的yum源

cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOFyum install nginx -y

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口

vim /etc/nginx/nginx.conf
events {worker_connections  1024;
}#添加
stream {log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';access_log  /var/log/nginx/k8s-access.log  main;upstream k8s-apiserver {server 192.168.30.105:6443;server 192.168.30.115:6443;server 192.168.30.106:6443;
}
server {listen 6443;proxy_pass k8s-apiserver;
}}http {
......

//检查配置文件语法

nginx -t   

//启动nginx服务,查看已监听6443端口

systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 

//部署keepalived服务

yum install keepalived -y

//修改keepalived配置文件

vim /etc/keepalived/keepalived.conf
! Configuration File for keepalivedglobal_defs {接收邮件地址notification_email {acassen@firewall.locfailover@firewall.locsysadmin@firewall.loc}邮件发送地址notification_email_from Alexandre.Cassen@firewall.locsmtp_server 127.0.0.1smtp_connect_timeout 30router_id NGINX_MASTER	#lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}#添加一个周期性执行的脚本
vrrp_script check_nginx {script "/etc/nginx/check_nginx.sh"	#指定检查nginx存活的脚本路径
}vrrp_instance VI_1 {state MASTER			#lb01节点的为 MASTER,lb02节点的为 BACKUPinterface ens33			#指定网卡名称 ens33virtual_router_id 51	#指定vrid,两个节点要一致priority 100			#lb01节点的为 100,lb02节点的为 90advert_int 1authentication {auth_type PASSauth_pass 1111}virtual_ipaddress {192.168.30.188/24	#指定 VIP}track_script {check_nginx			#指定vrrp_script配置的脚本}
}

//创建nginx状态检查脚本

vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")if [ "$count" -eq 0 ];thensystemctl stop keepalived
fichmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)

systemctl start keepalived
systemctl enable keepalived
ip a				#查看VIP是否生成

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP

cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.30.188:6443

vim kubelet.kubeconfig
server: https://192.168.30.188:6443

vim kube-proxy.kubeconfig
server: https://192.168.30.188:6443

//重启kubelet和kube-proxy服务

systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态

netstat -natp | grep nginx
tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      99160/nginx: master 
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      99160/nginx: master 
tcp        0      0 192.168.30.107:35038    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56352    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:35026    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36606    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36560    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56358    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56340    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46622    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46602    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46604    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56304    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36624    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:35032    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46668    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:35020    192.168.30.105:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46666    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56346    192.168.30.115:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36574    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36558    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56298    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56286    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.102:36602    ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.107:56292    192.168.30.106:6443     ESTABLISHED 99163/nginx: worker 
tcp        0      0 192.168.30.188:6443     192.168.30.101:46660    ESTABLISHED 99163/nginx: worker

在 master01 节点上操作

//测试创建pod

kubectl run nginx --image=nginx

//查看Pod的状态信息

kubectl get pods
NAME    READY   STATUS              RESTARTS   AGE
nginx   0/1     ContainerCreating   0          33s   #正在创建中kubectl get pods
NAME    READY   STATUS    RESTARTS   AGE
nginx   1/1     Running   0          27s          #创建完成,运行中kubectl get pods -o wide
NAME    READY   STATUS    RESTARTS   AGE   IP             NODE             NOMINATED NODE   READINESS GATES
nginx   1/1     Running   0          77s   172.16.18.65   192.168.30.102   <none>           <none>
//READY为1/1,表示这个Pod中有1个容器

//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问

curl 172.17.36.2

//这时在master01节点上查看nginx日志,发现没有权限查看

kubectl logs nginx-dbddb74b8-nf9sk

3 部署 Dashboard

Dashboard 介绍

仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如部署,作业,守护进程等)。例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。

//在 master01 节点上操作 #上传 recommended.yaml 文件到 /opt/k8s 目录中

cd /opt/k8s
vim recommended.yaml

#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:

kind: Service
apiVersion: v1
metadata:labels:k8s-app: kubernetes-dashboardname: kubernetes-dashboardnamespace: kubernetes-dashboard
spec:ports:- port: 443targetPort: 8443nodePort: 30001     #添加type: NodePort          #添加selector:k8s-app: kubernetes-dashboardkubectl apply -f recommended.yaml

#创建service account并绑定默认cluster-admin管理员集群角色

kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

#使用输出的token登录Dashboard https://NodeIP:30001

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/182567.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pyhotn: Mac安装selenium没有chromedriver-114以上及chromedriver无法挪到/usr/bin目录下的问题

1.0 安装selenium 终端输入&#xff1a; pip install selenium 查看版本&#xff1a; pip show selenium2.0 安装chromedriver 查看chrome版本 网上大多数是&#xff0c;基本到114就停了。 https://registry.npmmirror.com/binary.html?pathchromedriver/ 各种搜索&#…

8-2、T型加减速计算简化【51单片机控制步进电机-TB6600系列】

摘要&#xff1a;本节介绍简化T型加减速计算过程&#xff0c;使其适用于单片机数据处理。简化内容包括浮点数转整型数计算、加减速对称处理、预处理计算 一、浮点数转整型数计算 1.1简化∆t_1计算 根据上一节内容已知 K0.676 step1.8/X&#xff08;x为细分值&#xff0c;1.8对…

Windows 系统服务器部署jar包时,推荐使用winsw,将jar包注册成服务,并设置开机启动。

一、其他方式不推荐的原因 1、Spring Boot生成的jar包&#xff0c;可以直接用java -jar运行&#xff0c;但是前提是需要登录用户&#xff0c;而且注销用户后会退出程序&#xff0c;所以不可用。 2、使用计划任务&#xff0c;写一个bat处理文件&#xff0c;里面写java -jar运行…

视频编辑软件Corel VideoStudio 会声会影2024中文剪辑使用教程

会声会影&#xff08;Corel VideoStudio&#xff09;2024为加拿大Corel公司发布的一款功能丰富的视频编辑软件。会声会影2023简单易用&#xff0c;具有史无前例的强大功能&#xff0c;拖放式标题、转场、覆叠和滤镜&#xff0c;色彩分级、动态分屏视频和新增强的遮罩创建器&…

技术分享 | 一文带你了解测试流程的体系

软件测试是软件质量保证的关键步骤。越早发现软件中存在的问题&#xff0c;修复问题的成本就越低&#xff0c;软件质量也就越高&#xff0c;软件发布后的维护费用越低。 为了能更好的保障软件质量&#xff0c;在软件测试的实践中&#xff0c;慢慢形成了一些流程用来达到这一目…

蓝桥云课--1014 第 1 场算法双周赛

2-数树数【算法赛】&#xff08;找规律&#xff09; 一、题目要求 二、思路 由此可以推导出来&#xff0c;当s[i]L时&#xff0c;下一个编号当前编号*2-1&#xff1b;当s[i]R时&#xff0c;下一个编号当前编号*2&#xff1b; 三、代码 #include<bits/stdc.h> #define…

Selenium学习(Java + Edge)

Selenium /səˈliːniəm/ 1. 简介 ​ Selenium是一个用于Web应用程序自动化测试工具。Selenium测试直接运行在浏览器中&#xff0c;就像真正的用户在操作一样。支持的浏览器包括IE、Mozilla Firefox、Safari、Google Chrome、Opera、Edge等。 ​ 适用于自动化测试&#x…

缺陷之灵魂操作bug

一、前言 正常来说&#xff0c;我们在测试缺陷的时候都是按照case来测试的&#xff0c;但是有些场景&#xff0c;例如说发散思维这种场景&#xff0c;就会找到一些比较不太正常、不好复现的缺陷&#xff0c;然后如果要辅助研发修复&#xff0c;就会极为痛苦。 二、场景描述 大…

装修服务预约小程序的内容如何

大小装修不断&#xff0c;市场中大小品牌也比较多&#xff0c;对需求客户来说&#xff0c;可以线下咨询也可以线上寻找品牌&#xff0c;总是可以找到满意的服务公司&#xff0c;而对装修公司来说如今线下流量匮乏&#xff0c;很多东西也难以通过线下方式承载&#xff0c;更需要…

腾讯云CVM服务器操作系统镜像大全

腾讯云CVM服务器的公共镜像是由腾讯云官方提供的镜像&#xff0c;公共镜像包含基础操作系统和腾讯云提供的初始化组件&#xff0c;公共镜像分为Windows和Linux两大类操作系统&#xff0c;如TencentOS Server、Windows Server、OpenCloudOS、CentOS Stream、CentOS、Ubuntu、Deb…

多目标优化中的“latent action”是什么?

2020 NeurIPS 中的“latent action”&#xff1a; Our model defines latent action as a boundary that splits the region represented by a node into a high-performing and a low performing region. 这里的latent action代表一个边界&#xff08;分类器&#xff09;&…

【案例】3D地球

效果图&#xff1a; 直接放源码 <!DOCTYPE html> <html> <head><meta http-equiv"Content-Type" content"text/html; charsetutf-8" /><meta name"viewport" content"initial-scale1.0, user-scalableno" …

Mysql高级——Mysql8一主一从,多主多从搭建

修改 /etc/hosts文件 ip地址 master1 ip地址 master2 ip地址 slave1 ip地址 slave2一主一从 create database master1db;create table master1db.master1tab(name char(50));insert into master1db.master1tab VALUES(1111);insert into master1db.master1tab VALUES(2222);m…

ARM 版 OpenEuler 22.03 部署 KubeSphere v3.4.0 不完全指南续篇

作者&#xff1a;运维有术 前言 知识点 定级&#xff1a;入门级KubeKey 安装部署 ARM 版 KubeSphere 和 KubernetesARM 版 KubeSphere 和 Kubernetes 常见问题 实战服务器配置 (个人云上测试服务器) 主机名IPCPU内存系统盘数据盘用途ks-master-1172.16.33.1661650200KubeSp…

苹果加大对印度的扶持,提高在其生产iphone的比重

KlipC报道&#xff1a;跟踪苹果产业链&#xff0c;有分析师预计2023年全球约12%-14%的iphone在印度生产&#xff0c;预计2024年&#xff0c;印度将生产20%-25%的iphone。 KlipC的合伙人Andi D表示&#xff1a;“近年来随着苹果对中国的以来&#xff0c;印度已经成为高科技制造和…

Linux开发板移植FTP服务器和OpenSSH时发现的问题

先上结论&#xff1a;如果在linux开发板上移植了OpenSSH&#xff0c;那么不仅可以远程登录Linux开发板&#xff0c;还可以用FileZilla在windows和Linux开发板之间传输文件&#xff0c;这时候就不需要移植vsftpd(移植vsftpd后windows可以用FileZilla跟Linux开发板传输文件)了&am…

甘特图组件DHTMLX Gantt用例 - 如何拆分任务和里程碑项目路线图

创建一致且引人注意的视觉样式是任何项目管理应用程序的重要要求&#xff0c;这就是为什么我们会在这个系列中继续探索DHTMLX Gantt图库的自定义。在本文中我们将考虑一个新的甘特图定制场景&#xff0c;DHTMLX Gantt组件如何创建一个项目路线图。 DHTMLX Gantt正式版下载 用…

AI 绘画 | Stable Diffusion 提示词

Prompts提示词简介 在Stable Diffusion中&#xff0c;Prompts是控制模型生成图像的关键输入参数。它们是一种文本提示&#xff0c;告诉模型应该生成什么样的图像。 Prompts可以是任何文本输入&#xff0c;包括描述图像的文本&#xff0c;如“一只橘色的短毛猫&#xff0c;坐在…

RFID管理方案有效提升电力物资管理效率与资产安全

在电力行业&#xff0c;电力资产的管理是一项重要的任务&#xff0c;为了实现对电力资产的精细化管理、入出库监控管理、盘点管理和巡查管理等&#xff0c;电力公司多采用电力资产RFID管理系统&#xff0c;该系统能够实时监控出入库过程&#xff0c;有效防止出入库错误&#xf…

基于卷积神经网络的抗压强度预测,基于卷积神经网络的抗折强度预测

目录 背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 卷积神经网络CNN抗压强度预测 完整代码:基于卷积神经网络的抗压强度和抗折强度预测,基于CNN的抗压强度和抗折强度预测(代码完整,数据…