使用verilog 实现 cordic 算法 ----- 旋转模式

1-设计流程

● 了解cordic 算法原理,公式,模式,伸缩因子,旋转方向等,推荐以下链接视频了解 cordic 算法。哔哩哔哩-cordic算法原理讲解
● 用matlab 或者 c 实现一遍算法
● 在FPGA中用 verilog 实现,注意使用有符号变量以及小数点定点化处理

备注:
在verilog 需要用 ram 存储的值:列举了13次迭代的tan值和对应角度;
在这里插入图片描述

2-RTL

分享自己写的一个cordic rtl :

2-1 测试代码 ,测试 一二三四象限内角度的sin cos 值。

module test_my_cordic(input i_clk,input i_rst);reg signed	[31:0]	r_angle;
reg					r_valid ;wire				w_ready;
wire signed	[31:0]	r_x = 39796;
wire signed	[31:0]	r_y = 0;(*dont_touch = "true"*)
my_cordic inst_my_cordic
(.i_clk             (i_clk),.i_rst             (i_rst),.i_iteration_count (16), //设置迭代次数 ,最大16次.i_setx            (r_x),.i_sety            (r_y),.i_set_angle       (r_angle),.i_valid           (r_valid),.o_sin             (),.o_cos             (),.o_valid           (),.o_ready           (w_ready)
);/*  测试 第四象限  0 ~ -90°
always @ (posedge i_clk or posedge i_rst) 
beginif (i_rst) beginr_angle <= 0;end else if (r_angle == -5898240 && w_ready) beginr_angle <= 0;	end else if (w_ready && r_valid) beginr_angle <= r_angle - 655360;	end else beginr_angle <= r_angle;			end
end
*/// 测试 第一象限 0 ~ 90°
always @ (posedge i_clk or posedge i_rst) 
beginif (i_rst) beginr_angle <= 0;end else if (r_angle == 5898240 && w_ready) beginr_angle <= 0;	end else if (w_ready && r_valid) beginr_angle <= r_angle + 655360;	end else beginr_angle <= r_angle;			end
end/* //测试 第三象限 -180 ~ -90°
always @ (posedge i_clk or posedge i_rst) 
beginif (i_rst) beginr_angle <= -11796480;end else if (r_angle == -5898240 && w_ready) beginr_angle <= -11796480;	end else if (w_ready && r_valid) beginr_angle <= r_angle + 655360;	end else beginr_angle <= r_angle;			end
end
*//*// 测试 第二象限 90° ~ 180 °
always @ (posedge i_clk or posedge i_rst) 
beginif (i_rst) beginr_angle <= 5898240;end else if (r_angle == 11796480 && w_ready) beginr_angle <= 0;	end else if (w_ready && r_valid) beginr_angle <= r_angle + 655360;	end else beginr_angle <= r_angle;			end
end
*/always @ (posedge i_clk or posedge i_rst) 
beginif (i_rst) r_valid <= 0;else if (w_ready && r_valid)r_valid <= 0;else if  (w_ready)r_valid <= 1;			else r_valid <= 0;	
endendmodule

2-2 核心代码:

//运算公式:
//x(i+1) = x(i) - y(i) * di * 2^(-i)
//y(i+1) = y(i) + x(i) * di * 2^(-i)
//z(i+1) = z(i) - arctan(di * 2^(-i))
//author : 技术小白爱FPGA
//备注:cordic 算法,旋转模式,迭代次数固定 16次,可以自己任意设置,最大16次module my_cordic (input                    i_clk                   ,input                    i_rst                   ,input [4:0]              i_iteration_count       ,input  signed [31:0]     i_setx                  ,input  signed [31:0]     i_sety                  ,input  signed [31:0]     i_set_angle             ,input                    i_valid                 ,output   signed [31:0]   o_sin                   ,output   signed [31:0]   o_cos                   ,output                   o_valid                 ,output                   o_ready    );wire signed	[31:0]	r_arctan [0:15];
wire				r_di ;reg signed	[31:0]	r_sin;
reg signed	[31:0]	r_cos;
reg signed	[31:0]	r_setx ;
reg signed	[31:0]	r_sety ;
reg signed	[31:0]	r_angle ;
reg	[4:0]			r_count;
reg					r_run_cal;
reg					ro_valid ;
reg					ro_ready ;
reg	[1:0]			r_site;assign o_sin   = r_sin;
assign o_cos   = r_cos;
assign o_ready = ro_ready;
assign o_valid = ro_valid;//存储 arctan 值,整体表示-----扩大2^16倍数,相当于将小数点定在16bit位置上
assign	r_arctan[0] = 2949120;
assign	r_arctan[1] = 1740967;
assign	r_arctan[2] = 919879;
assign	r_arctan[3] = 466945;
assign	r_arctan[4] = 234378;
assign	r_arctan[5] = 117303;
assign	r_arctan[6] = 58666;
assign	r_arctan[7] = 29334;
assign	r_arctan[8] = 14667;
assign	r_arctan[9] = 7333;
assign	r_arctan[10]= 3666;
assign	r_arctan[11]= 1833;
assign	r_arctan[12]= 916;
assign	r_arctan[13]= 458;
assign	r_arctan[14]= 229;
assign	r_arctan[15]= 114;//判断旋转的方向
assign r_di = (r_angle > 0 && r_run_cal)?1:0;//运算迭代  >>>  --- > 算数右移,不改变符号位; 如果使用 >> ,移位,高位补0;
always @ (posedge i_clk) 
beginif (i_valid) beginr_setx <= i_setx;r_sety <= i_sety;endelse if (r_run_cal && r_di ) beginr_setx <= r_setx - (r_sety >>> r_count);r_sety <= r_sety + (r_setx >>> r_count);		end else if (r_run_cal && !r_di) beginr_setx <= r_setx + (r_sety >>> r_count);r_sety <= r_sety - (r_setx >>> r_count);	end
end//旋转角度的迭代,输入角度的象限处理
always @ (posedge i_clk ) 
begin// 处理 一四象限 -90° ~ 90°if (i_valid && (i_set_angle >= -5898240 && i_set_angle <= 5898240 ) ) beginr_angle <= i_set_angle;r_site  <= 2'b00;// 处理 二象限 90° ~ 180°end else if (i_valid && (i_set_angle > 5898240 && i_set_angle <= 11796480 )) beginr_angle <= 11796480 - i_set_angle;r_site  <= 2'b10;// 处理 三象限 -180° ~ -90°end else if (i_valid && (i_set_angle >= -11796480 && i_set_angle < -5898240 )) beginr_angle <= -11796480 - i_set_angle ;r_site  <= 2'b11;end else if (r_di && r_run_cal) beginr_angle <= r_angle - r_arctan[r_count];		endelse if (!r_di && r_run_cal) beginr_angle <= r_angle + r_arctan[r_count];		end else beginr_angle <= r_angle;r_site  <= r_site ;end
end//迭代运算次数
always @ (posedge i_clk or posedge i_rst) 
beginif (i_rst) beginr_count <= 0;end else if (r_count == i_iteration_count -1) beginr_count <= 0;endelse if (r_run_cal) beginr_count <= r_count + 1;end
end//迭代运算标志
always @ (posedge i_clk or posedge i_rst) 
beginif (i_rst) beginr_run_cal <= 0;endelse if (r_count == i_iteration_count -1) beginr_run_cal <= 0;	endelse if(i_valid) beginr_run_cal <= 1;		endelse beginr_run_cal <= r_run_cal;	end
end//最终输出的 sin cos 值
always @ (posedge i_clk or posedge i_rst) 
beginif (i_rst) beginr_sin <= 0;r_cos <= 0;endelse if (r_site == 2'b00 && r_count == i_iteration_count -1) beginr_sin <= r_sety;r_cos <= r_setx;		end else if (r_site == 2'b10 && r_count == i_iteration_count -1) beginr_sin <= r_sety;r_cos <= -r_setx;	end else if (r_site == 2'b11 && r_count == i_iteration_count -1) beginr_sin <= r_sety;r_cos <= -r_setx;	end
endalways @ (posedge i_clk or posedge i_rst) 
beginif (i_rst) beginro_ready <= 1;endelse if (i_valid || r_run_cal) beginro_ready <= 0;		end else beginro_ready <= 1;end
end//最终输出的 sin cos valid 信号
always @ (posedge i_clk or posedge i_rst) 
beginif (i_rst) ro_valid <= 0;else if (r_count == i_iteration_count -1)ro_valid <= 1;		else ro_valid <= 0;	
endendmodule

2-3 tb仿真代码

module tb_cordic();reg i_clk;
reg i_rst;initial begin i_clk = 0;i_rst = 1;#100@(posedge i_clk)i_rst =0;
endalways #10 i_clk = ~i_clk;test_my_cordic inst_test_my_cordic (.i_clk(i_clk), .i_rst(i_rst));endmodule

3-仿真

a. 首先 有符号的信号需要设置 小数点位数,如下图所示:
在这里插入图片描述
b. 以第一象限为例子:0 ~ 90°
在这里插入图片描述
c. 运算处理 持续周期 就是 迭代次数:
在这里插入图片描述

d. 可借助 计算机科学模式验证结果:
在这里插入图片描述

4-可优化空间

● r_ange逻辑级数;
● 360°以内,高于180°和小于-180°处理
● 迭代运算拆成流水线形式;
● 加上向量模式
● 整体其它逻辑的优化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/18362.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】Socket编程—TCP

&#x1f525; 个人主页&#xff1a;大耳朵土土垚 &#x1f525; 所属专栏&#xff1a;Linux系统编程 这里将会不定期更新有关Linux的内容&#xff0c;欢迎大家点赞&#xff0c;收藏&#xff0c;评论&#x1f973;&#x1f973;&#x1f389;&#x1f389;&#x1f389; 文章目…

分布式技术

一、为什么需要分布式技术&#xff1f; 1. 科学技术的发展推动下 应用和系统架构的变迁&#xff1a;单机单一架构迈向多机分布式架构 2. 数据大爆炸&#xff0c;海量数据处理场景面临问题 二、分布式系统概述 三、分布式、集群 四、负载均衡、故障转移、伸缩性 负载均衡&a…

python后端调用Deep Seek API

python后端调用Deep Seek API 需要依次下载 ●Ollama ●Deepseek R1 LLM模型 ●嵌入模型nomic-embed-text / bge-m3 ●AnythingLLM 参考教程&#xff1a; Deepseek R1打造本地化RAG知识库:安装部署使用详细教程 手把手教你&#xff1a;deepseek R1基于 AnythingLLM API 调用本地…

优选驾考小程序

第2章 系统分析 2.1系统使用相关技术分析 2.1.1Java语言介绍 Java语言是一种分布式的简单的 开发语言&#xff0c;有很好的特征&#xff0c;在安全方面、性能方面等。非常适合在Internet环境中使用&#xff0c;也是目前企业级运用中最常用的一个编程语言&#xff0c;具有很大…

02、QLExpress从入门到放弃,相关API和文档

QLExpress从入门到放弃,相关API和文档 一、属性开关 public class ExpressRunner {private boolean isTrace;private boolean isShortCircuit;private boolean isPrecise; }/*** 是否需要高精度计算*/ private boolean isPrecise false;高精度计算在会计财务中非常重要&…

达梦:TPCC 压测

目录 造数1. 脚本启动2. 检查数据库信息3. 删除旧用户和表空间4. 创建新的表空间5. 创建用户和表6. 数据加载7. 创建索引8. 创建存储过程和序列9. 检查数据空间使用情况10. 启用表的快速访问池11. 数据加载完成总结 压测1. 脚本启动2. 检查数据表空间3. 设置表的快速池标志4. 检…

【ClickHouse】Ubuntu下离线安装ClickHouse数据库并使用DBeaver连接

目录 0. 安装前准备1 安装ClickHouse1.1 下载安装包1.2 离线安装1.3 配置密码1.4 启动ClickHouse服务 2 DBeaver连接配置2.1 下载ClickHouse驱动2.2 DBeaver配置2.2.1 配置主要参数2.2.2 配置驱动 2.3 常见问题处理2.3.1 修改远程登录配置2.3.2 更新驱动配置 0. 安装前准备 有…

CCF-GESP 等级考试 2024年9月认证C++二级真题解析

2024年9月真题 一、单选题&#xff08;每题2分&#xff0c;共30分&#xff09; 正确答案&#xff1a;A 考察知识点&#xff1a;计算机存储 解析&#xff1a;磁心存储元件是早期计算机中用于存储数据的部件&#xff0c;它和现代计算机中的内存功能类似&#xff0c;都是用于临时…

nuxt中引入element-ui组件控制台报错问题

在使用element-ui组件的外层加一层 <client-only placeholder"Loading..."><van-button type"primary">主要按钮</van-button> </client-only> 实际使用&#xff1a; <div class"tab"><client-only placehol…

京东 旋转验证码 分析

声明: 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 逆向分析 使用的第三方接码平台识别…

Git 查看修改记录 二

Git 查看修改记录 二 续接 Git 查看一个文件的修改记录 一 一、修改 A.txt 修改 A.txt number6执行命令 git add . git commit -a -m "修改 number6" # git commit -a -m "修改 number6" 执行 输出如下 # $ git commit -a -m "修改 number6"…

微软AutoGen高级功能——Magentic-One

介绍 大家好&#xff0c;博主又来给大家分享知识了&#xff0c;这次给大家分享的内容是微软AutoGen框架的高级功能Magentic-One。那么它是用来做什么的或它又是什么功能呢&#xff0c;我们直接进入正题。 Magentic-One Magnetic-One是一个通用型多智能体系统&#xff0c;用于…

Unity中自定义协程的简单实现

在 Unity 中&#xff0c;协程&#xff08;Coroutine&#xff09;是一种非常强大的工具&#xff0c;它允许我们在不阻塞主线程的情况下&#xff0c;将代码的执行分成多个步骤&#xff0c;在不同的帧中执行。 Unity中协程实现原理 迭代器与状态机&#xff1a;本质上是基于C#的迭…

数值积分:通过复合梯形法计算

在物理学和工程学中&#xff0c;很多问题都可以通过数值积分来求解&#xff0c;特别是当我们无法得到解析解时。数值积分是通过计算积分区间内离散点的函数值来近似积分的结果。在这篇博客中&#xff0c;我将讨论如何使用 复合梯形法 来进行数值积分&#xff0c;并以一个简单的…

【Linux】--- 基础开发工具之yum/apt、vim、gcc/g++的使用

Welcome to 9ilks Code World (๑•́ ₃ •̀๑) 个人主页: 9ilk (๑•́ ₃ •̀๑) 文章专栏&#xff1a; Linux网络编程 本篇博客我们来认识一下Linux中的一些基础开发工具 --- yum,vim,gcc/g。 &#x1f3e0; yum &#x1f3b8; 什么是yum 当用户想下载软…

DeepSeek教unity------MessagePack-02

内置支持类型&#xff1a; 对象序列化 MessagePack for C# 可以序列化你自己定义的公共类或结构体类型。默认情况下&#xff0c;可序列化的类型必须用 [MessagePackObject] 属性进行注解&#xff0c;成员需要用 [Key] 属性进行注解。键可以是索引&#xff08;整数&#xff09;…

deepseek部署在本地详细教程

最近&#xff0c;DeepSeek爆火&#xff0c;先进的算法、卓越的能力&#xff0c;表现出众&#xff0c;其凭一己之力推动国内Ai大模型跨越式发展。作为一款现象级的Ai产品&#xff0c;用户量暴增&#xff0c;最近服务器又被攻击&#xff0c;使用DeepSeek&#xff0c;经常出现服务…

修改OnlyOffice编辑器默认字体

通过Docker修改OnlyOffice编辑器默认字体 问题描述详细方案1. 删除原生字体文件2. 创建字体目录3. 复制字体文件到容器中4. 执行字体更新脚本5. 重新启动容器 注意事项 问题描述 在OnlyOffice中&#xff0c;编辑器的默认字体可能不符合公司或个人的需求&#xff0c;通常会使用…

Vue学习笔记4

Vue学习笔记 一、自定义创建项目 基于VueCli自定义创建项目架子 二、vuex基本认知 1、vuex概述 是什么&#xff1a;是vue的状态管理工具&#xff08;插件&#xff09;&#xff0c;状态就是数据 大白话&#xff1a;vuex是一个插件&#xff0c;可以帮助我们管理vue通用的数…

文心一言4月起全面免费,6月底开源新模型:AI竞争进入新阶段?

名人说&#xff1a;莫听穿林打叶声&#xff0c;何妨吟啸且徐行。—— 苏轼 Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 一、文心一言免费化的背后&#xff1a;AI成本与应用的双重驱动1️⃣成本下降&#xff0c;推动文心一言普及2…