【电路笔记】-串联RLC电路分析

串联RLC电路分析

文章目录

  • 串联RLC电路分析
    • 1、概述
    • 2、瞬态响应
    • 3、AC响应
    • 4、RCL和CLR配置
    • 5、结论

电阻器 ®、电感器 (L) 和电容器 © 是电子器件中的三个基本无源元件。 它们的属性和行为已在交流电阻、交流电感和交流电容文章中详细介绍。

在本文中,我们将重点讨论这三个组件的串联组合(称为串联 RLC 电路)。 首先,演示部分总结了三个组成组件的交流行为,并简要介绍了 RLC 电路。

在这里插入图片描述

在第二部分中,我们讨论该电路在直流电压阶跃下的电气行为,并强调为什么这种特定响应很重要。

接下来,我们在第三部分中通过计算和绘制 RLC 电路的传递函数来重点关注 RLC 电路的交流响应。

最后,我们通过在彼此之间切换组件来提出 RLC 电路的两种替代方案,我们看到交流响应变得完全不同。

1、概述

下面的图 1 给出了 RLC 电路的表示:

在这里插入图片描述

图1:RLC串联电路示意图

该电阻器是纯电阻元件,其两端的电压和电流之间不存在相移。 其阻抗 ( Z R Z_R ZR) 在直流和交流状态下保持相同,等于 R R R(以 Ω \Omega Ω 为单位)。

电感器是纯电抗元件,相移为 +90° 或 + π / 2 +\pi/2 +π/2 rad。 其阻抗由 Z L = j ω L Z_L=j\omega L ZL=L 给出,其中 ω \omega ω 是交流情况下电压/电流的角脉动,L 是电感(以 H H H 为单位)。 在直流状态下,电感器表现为两个端子之间的短路,而在交流状态下,当阻抗随频率增加时,电感器会变成开路。

电感器通常被视为抵抗电流变化的组件。

电容器也是纯电抗元件,但其相移为-90°或 − π / 2 -\pi/2 π/2 rad。 其阻抗由 Z C = − j / C ω Z_C=-j/C\omega ZC=j/Cω 给出,其中 C C C 为电容(以 F F F 为单位),因此当频率增加时,它在直流状态下表现为开路,在交流状态下表现为短路。

电容器通常被视为抵抗电压变化的组件。

在图 1 中,这三个组件串联互连。 该电路由直流或交流电源供电,输出是电容器两端的电压。 电路的总阻抗是前面所述的独立阻抗的总和:

在这里插入图片描述

在下一节中,我们将介绍该电路对电压阶跃的响应,也称为瞬态响应

2、瞬态响应

在本节中,我们将重点关注图 1 中所示电路在应用 Heaviside 步骤 H ( t ) H(t) H(t) 时的行为:

在这里插入图片描述

图2:海维赛德(Heaviside)函数

Heaviside 步骤的特征是, t < 0 t<0 t<0 时等于 0, t > 0 t>0 t>0 时等于 V i n V_{in} Vin。 这两种状态之间的转换类似于脉冲,因为当 t = 0 t=0 t=0 时导数趋向于 + ∞ +\infin +

通过对电路进行网格分析,我们可以写出 V i n = R × I + L × d I / d t + V o u t V_{in}=R×I+L×dI/dt+V_{out} Vin=R×I+L×dI/dt+Vout。 此外,我们知道电流可以改写为 I = C × d V o u t / d t I=C×dV_{out}/dt I=C×dVout/dt,从而得到以下二阶微分方程:
在这里插入图片描述

等式1:串联RLC电路的二阶微分方程

该方程的解是永久响应(时间恒定)和瞬态响应 V o u t V_{out} Vout, t r tr tr(时间变化)之和。 永久响应很容易且明显地找到,解 V o u t = V i n V_{out}=V_{in} Vout=Vin 确实是等式1 的永久解。

瞬态响应的确定很复杂,涉及许多步骤,本文将不详细介绍。 我们承认它的表达式可以采用三种不同的形式,并且取决于称为电路品质因数的 Q = ( 1 / R ) L / C Q=(1/R)\sqrt{L/C} Q=(1/R)L/C 的值。 另一个重要参数是 ω 0 = 1 / L C \omega_0=1/\sqrt{LC} ω0=1/LC ,它是电路的基本脉动。

Q > 1 / 2 Q>1/2 Q>1/2 时,该状态被称为伪周期或欠阻尼响应,瞬态响应可以写成 V o u t , t r = A e − α t cos ⁡ ( ω t + ϕ ) V_{out,tr}=Ae^{-\alpha t}\cos(\omega t+\phi) Vout,tr=Aeαtcos(ωt+ϕ) 的形式。 常数 A A A α \alpha α ϕ \phi ϕ 可以通过考虑电路的初始条件(电容器是否充电……)来找到。 脉动 ω \omega ω被称为伪脉动并且取决于基本脉动 ω 0 \omega_0 ω0

最后, Q = 1 / 2 Q=1/2 Q=1/2 时的最后一种情况,对应于临界状态或临界阻尼响应。 在这种情况下, V o u t , t r = ( A + B t ) e − ω 0 t V_{out,tr}=(A+Bt)e^{-\omega_0t} Vout,tr=(A+Bt)eω0t

需要记住的重要一点是,这些不同的解决方案决定了电压 V o u t V_{out} Vout 如何表现,并在应用 Heaviside 步骤时趋向于其永久值 V i n V_{in} Vin

在这里插入图片描述

图3:瞬态响应不同状态的曲线

我们可以通过开始说随着时间的增加每条曲线都趋于 0 来讨论这个数字。 这是有道理的,因为我们知道 V o u t = V i n + V o u t , t r V_{out}=V_{in}+V_{out,tr} Vout=Vin+Vout,tr V o u t ( t → + ∞ ) = V i n V_{out}(t→+\infin)=V_{in} Vout(t+)=Vin,因此, V o u t , t r → 0 Vout,tr→0 Vout,tr0

然而,不同的可能瞬态响应在相同的速度和行为下不会趋于 0。 临界状态是最快趋于 0 的状态,而非周期状态最慢。 伪周期状态呈现振幅呈指数下降的振荡。

对于未知的 RLC 电路,识别瞬态响应并将其与最佳可能曲线相匹配可以为我们提供电路的重要属性,例如 ω 0 \omega_0 ω0 Q Q Q

3、AC响应

在本节中,我们考虑图 1 中所示的相同电路,现在提供交流电源。 利用复数表示中 d X / d t = j ω X dX/dt=j\omega X dX/dt=X 的性质,其中 ω \omega ω 是源的角脉动,我们可以将方程 1 重写为以下形式:

在这里插入图片描述

等式2:串联RLC电路的复二阶微分方程

然后我们可以表达 V o u t / V i n V_{out}/V_{in} Vout/Vin 的比率,它是串联 RLC 电路的传递函数 T T T

在这里插入图片描述

等式3:串联RLC电路的传递函数

知道 Q = ( 1 / R ) L / C Q=(1/R)\sqrt{L/C} Q=(1/R)L/C ω 0 = 1 / L C \omega_0=1/\sqrt{LC} ω0=1/LC 并考虑参数 x = ω / ω 0 x=\omega/\omega_0 x=ω/ω0(称为减少脉动),我们可以重新排列等式3,以写出规范形式 传递函数简化并使得表达式更加紧凑:

在这里插入图片描述

等式4:RLC电路传递函数的规范形式

绘制传递函数的范数以获得作为参数x的函数的电路增益是很有趣的。 本例中取值 R = 10 Ω R=10\Omega R=10Ω 20 Ω 20\Omega 20Ω L = 0.2 H L=0.2H L=0.2H C = 100 μ F C=100\mu F C=100μF

在这里插入图片描述

图4:串联RLC电路的增益

我们可以注意到,图 1 中的串联 RLC 电路在交流状态下充当二阶低通滤波器,因为它会降低高于 ω 0 \omega_0 ω0(通常称为电路的谐振频率)的脉动的输出信号。

二阶滤波器具有稍微放大 ω 0 \omega_0 ω0 附近频率的信号的特性,并在截止频率之后呈现 -40dB/dec 的下降,而不是像一阶滤波器那样仅 -20dB/dec。

图 4 中突出显示了 Q Q Q 值(取决于 R R R)对曲线形状的影响。 谐振频率附近的峰值确实由其带宽 △ ω = ω 0 / Q \triangle \omega =\omega_0/Q ω=ω0/Q 来表征。

在此示例中, ω 0 = 223 \omega_0=223 ω0=223 rad/s 且 Q = 4.5 Q=4.5 Q=4.5 或 2.25,这为橙色曲线提供了较窄的带宽 △ ω = 50 \triangle \omega=50 ω=50rad/s,为蓝色曲线提供了 100rad/s 的较宽带宽。 因此,我们可以注意到,品质因数决定了谐振是窄(大 Q Q Q)还是宽(小 Q Q Q)。

如上一节所述,用最佳曲线拟合未知电路的传递函数使我们能够了解电路的属性,从而确定其组成元件的值。

4、RCL和CLR配置

基本元件R、L和C的其他组合可以提供不同类型的滤波器。 我们之前已经看到,RLC 配置是二阶低通滤波器,但是如果我们在它们之间切换一些组件会怎么样?

图 5 和图 6 展示了两种新配置,分别称为 RCL 和 CLR 电路:

在这里插入图片描述

图5:RLC电路图

在这里插入图片描述

图6:CLR电路图

尽管这些电路与图 1 所示的原始 RLC 电路之间存在微小变化,但交流响应却有很大不同。

确实可以证明,这两个电路的传递函数由等式 4 和 5 给出:

在这里插入图片描述

等式5:RLC电路传递函数

在这里插入图片描述

等式6:CLR电路传递函数

这些新滤波器的性质通过绘制具有相同值的传递函数范数来揭示: R = 10 Ω R=10\Omega R=10Ω 20 Ω 20\Omega 20Ω L = 0.2 H L=0.2 H L=0.2H C = 100 μ F C=100\mu F C=100μF

在这里插入图片描述

图7:串联RLC和LCR电路的增益

电路 RCL 是二阶高通滤波器,因为它衰减 ω 0 \omega_0 ω0 以下的频率。 电路 CLR 是一个带通滤波器,因为它仅放大 ω 0 \omega_0 ω0附近的频率。 请注意,与上一节中关于曲线形状作为 Q Q Q 的函数的相同评论仍然适用于这两个滤波器。

5、结论

  • 串联 RLC 电路只是三个电子元件的串联组合:电阻器、电感器和电容器。 电阻器的阻抗是实数,电感器和电容器的阻抗是纯虚数,电路的总阻抗是这三个阻抗的总和,因此是一个复数。
  • 电路的瞬态响应首先在第二部分中定义和介绍。 它包括研究提供海维赛电压阶跃时电路的行为。 通过研究与电路相关的二阶微分方程的可能解,出现了三种可能的情况:
    • 欠阻尼响应,信号缓慢振荡至永久值 V i n V_{in} Vin
    • 信号缓慢增加至永久值的过阻尼响应。
    • 临界阻尼响应是信号以最快的速度增加到永久值的情况。
  • 第三部分介绍了电路的交流响应。 当提供交流信号时,微分方程可以写成复数形式,以便找到电路的传递函数。 绘制该函数的范数表明串联 RLC 电路的行为类似于二阶低通滤波器。
  • 在最后一节中,我们研究了称为 RCL 和 CLR 的替代配置。 本节展示了通过简单地切换组件就可以用同一电路制作二阶高通滤波器或带通滤波器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/184958.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

内网穿透工具之花生壳(二)

目录 开始教程 第一步&#xff1a;进入管理官网&#xff0c;注册并登录账号 第二步&#xff1a;进入 管理页面 第三步&#xff1a;添加映射表&#xff0c;然后填写一下基本内容 总结&#xff1a;emmm,反正都很快上手&#xff0c;但是这个就免费1G流量,这个免费的还是https…

操作系统 day06(进程控制、原语)

进程控制的概念 原语 怎么实现进程控制—用原语实现 如果不能一气呵成&#xff0c;那么会出现操作系统中的某些关键数据结构信息不统一的情况&#xff0c;这会影响操作系统进行别的管理工作&#xff0c;如下图所示&#xff1a; 原语的原子性怎么实现 正常情况下&#xff…

【学习笔记】MySQL死锁及热点行问题

目录 案例优化思路死锁的一些记录笔记热点行问题 本文记录下关于MySQL优化的学习和一点点思考。 案例 一个并发比较大的下单接口&#xff1b; 包括 step1 扣减商品库存step2 生成订单数据step3 记录操作记录 伪代码如下&#xff0c;底层使用的是MySQL数据库&#xff0c;单体服务…

OFDM深入学习及MATLAB仿真

文章目录 前言一、OFDM 基本原理及概念1、OFDM 简介2、子载波3、符号4、子载波间隔与符号长度之间的关系 二、涉及的技术1、保护间隔2、交织3、信道编码4、扩频5、导频6、RF&#xff08;射频&#xff09;调制7、信道估计 三、变量间的关系四、IEEE 802.11a WLAN PHY 层标准五、…

84 柱状图中的最大的矩形(单调栈)

题目 柱状图中的最大的矩形 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图中&#xff0c;能够勾勒出来的矩形的最大面积。 示例 1: 输入&#xff1a;heights [2,1,5,6,2,3] 输出&#xff1a;10 …

前端-选中DOM定位源代码

用到的工具&#xff1a;react-dev-inspector 使用流程 根据react-dev-inspector文档进行配置 安装 yarn add --dev react-dev-inspector配置&#xff1a;在根目录下配置Inspector import { createRoot } from react-dom/client import { Inspector } from react-dev-inspe…

0004Java安卓程序设计-springboot基于APP的鲜花商城

文章目录 **摘 要****目录**系统设计开发环境 编程技术交流、源码分享、模板分享、网课教程 &#x1f427;裙&#xff1a;776871563 摘 要 本毕业设计的内容是设计并且实现一个基于APP的鲜花商城。它是在Windows下&#xff0c;以MYSQL为数据库开发平台&#xff0c;java技术和…

【Java】基于SpringBoot创建Web页面并热更新

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍基于SpringBoot创建Web页面并热更新。 学其所用&#xff0c;用其所学。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c;下…

竞赛 目标检测-行人车辆检测流量计数

文章目录 前言1\. 目标检测概况1.1 什么是目标检测&#xff1f;1.2 发展阶段 2\. 行人检测2.1 行人检测简介2.2 行人检测技术难点2.3 行人检测实现效果2.4 关键代码-训练过程 最后 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 行人车辆目标检测计数系统 …

linux gdb 调试 常见调试命令介绍+总结

1.调试前准备 -g gcc arcg.c -g -oO -o app //必须添加-g 2.调试 gdb gdb app 3.常见调试命令 set args 1 2 3 4 5 6 //设置参数 show args //查看参数 3.1执行程序 1.start2. run gdb app set args 1 2 3 4 5 start //执行一行 c //继续执行 q…

【uniapp】通用列表封装组件

uniapp页面一般都会有像以下的列表页面&#xff0c;封装通用组件&#xff0c;提高开发效率&#xff1b; &#xff08;基于uView前端框架&#xff09; 首先&#xff0c;通过设计图来分析一下页面展示和数据结构定义 w-table组件参数说明 参数说明类型可选值默认值toggle列表是…

苹果转移供应链,促中国手机和中国制造更紧密合作,加速技术升级

随着苹果力推富士康等奔赴印度和越南设厂&#xff0c;引发的另一大反应恐怕是它所没有想到的&#xff0c;那就是中国手机和中国制造产业链的合作更加紧密了&#xff0c;中国制造产业链的技术水平反而因此得到提升。 一、产业链技术升级依赖苹果 对于制造产业链来说&#xff0c;…

【AntDesign】Docker部署

docker部署是主流的部署方式&#xff0c;极大的方便了开发部署环境&#xff0c;保持了环境的统一&#xff0c;也是实现自动化部署的前提。 1 项目的目录结构 dist: 使用build打包命令&#xff0c;生成的打包目录 npm run build : 打包项目命令 docker: 存放docker容器需要修改…

QT第2课-GUI程序实例分析

GUI程序开发概述 不同的操作系统GUI开发原理相同不同的操作系统GUI SDK 不同 GUI 程序开发原理 GUI程序在运行时会创建一个消息队列系统内核将用户的键盘鼠标操作翻译成对应的程序消息程序在运行过程中需要实时处理队列中的消息当队列中没有消息时&#xff0c;程序将处于停滞…

详解静态成员变量以及静态成员函数

一、静态成员变量 类的静态成员变量是该类的所有对象共有的(只有一份)&#xff0c;只能在类里声明&#xff0c;类外定义。 相当于只属于类的全局变量。 1、定义: 只能在全局中定义 2、访问方式&#xff1a;(假如类A 中有公有静态变量 _a) &#xff0c;可以用 A::_a 或 A a; a._…

【Unity】简单案例脚本实现 | 鼠标观察/键盘控制移动飞行/行走/碰撞检测

《Unity5实战-使用C#和Unity开发多平台游戏》第二章-构建一个让你置身3D空间的演示 鼠标观察/键盘控制移动飞行/行走/碰撞检测 Unity版本&#xff1a;2019.4.23f1c1 注意脚本名称和组件添加&#xff0c;不在文章中一一强调场景模型都是在资源商店选择的免费下载&#xff08;选…

Vite创建React项目,另外一种更加简单的方法

在上一篇blog中一个一个安装依赖dependencies&#xff0c;有没有一步到位的方法呢&#xff0c;有! 参考《React 18 Design Patterns and Best Practices Design, build, and deploy production-ready web applications with React》4th 第一章倒数第二节Vite as a solution有个…

wpf Grid布局详解 `Auto` 和 `*` 是两种常见的设置方式 行或列占多个单元格,有点像excel里的合并单元格。使其余的列平均分配剩余的空间

比如只有行的界面 <Window x:Class"GenerateTokenApp.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/exp…

Linux - 实现一个简单的 shell

前言 之前我们对进程的替换&#xff0c;进程地址空间等等的概念进行了说明&#xff0c;本篇博客会基于这些知识点来 实现一个简单的 shell &#xff0c;如有疑问&#xff0c;可以参考下述博客&#xff1a;Linux - 进程程序替换 - C/C 如何实现与各个语言之间的相互调用 - 替换…

Redis 键值类型及其存储结构

Redis 键值类型及其存储结构 键值类型 键的数据类型是字符串&#xff0c;值的类型有&#xff1a;字符串、列表、Hash、集合、有序集合。 键的存储和查找 Redis底层键的存储类似于Java中其他Hash存储结构&#xff1a;数组链表的组合。数组中存储的是Key Hash函数对数组长度取模…