【Python大数据笔记_day05_Hive基础操作】

一.SQL,Hive和MapReduce的关系

 用户在hive上编写sql语句,hive把sql语句转化为MapReduce程序去执行

 二.Hive架构映射流程

用户接口:

        包括CLI、JDBC/ODBC、WebGUI,CLI(command line interface)为shell命令行;Hive中的Thrift服务器允许外部客户端通过网络与Hive进行交互,类似于JDBC或ODBC协议。WebGUI是通过浏览器访问Hive。

        --Hive提供了Hive Shell、ThriftServer等服务进程向用户提供操作接口

Driver:包括语法解析器、计划编译器、优化器、执行器

        作用:完成HQL查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在HDFS中,并在随后有MapReduce调用执行。

        注意:这部分内容不是具体的服务进程,而是封装在Hive所依赖的Jar包中的Java代码中。

元数据包含:用Hive创建的database、table、表的字段等元信息、

元数据存储:存在关系型数据库中,如hive内置的Derby数据库或者第三方MySQL数据库等,一般用MySQL数据库。

Metastore:即元数据存储服务

作用是:客户端连接Metastore服务,Metastore再去连接MySQL等数据库来存储元数据。

特点:有了Metastore服务,就可以有多个客户端同时连接,而且这些客户端不需要知道MySQL等数据库的用户名和密码,只需要Metastore服务即可。

三.MetaStore元数据管理三种模式

metastore服务配置有3中模式:内嵌模式、本地模式、远程模式

推荐使用:远程模式

 内嵌模式:

        优点:配置简单,hive命令直接可以使用

        缺点:不适用于生产环境,derby和Metastore服务都嵌入在Hive server进程中,一个服务只能被一个客户端连接:如果两个客户端以上就非常浪费资源),且元数据不能共享

本地模式:

        优点:可以单独使用外部的数据库(MySQL),元数据共享

        缺点:相对浪费资源,Metastore嵌入到了hive进程中,每启动一次hive服务,都内置启动了一个metastore。

远程模式:

        优点:可以单独使用外部库(MySQL),可以共性元数据,本地可以连接metastore服务也可以连接hiveserver2服务,增加了扩展性(其他依赖hive的软件都可以通过metastore访问hive)

        缺点:需要注意的是如果要启动hiveserver2服务需要先启动metastore服务

四.hive服务操作[重点]

启动hive服务

[root@node1 /]# nohup hive --service metastore &
[1] 10693
[root@node1 /]nohup: 忽略输入并把输出追加到"nohup.out"[root@node1 /]# nohup hive --service hiveserver2 &
[2] 10829
您在 /var/spool/mail/root 中有新邮件
[root@node1 /]nohup: 忽略输入并把输出追加到"nohup.out"[root@node1 /]# jps
2704 NodeManager
2209 DataNode
10946 Jps
10693 RunJar
3208 JobHistoryServer
2075 NameNode
2557 ResourceManager
10829 RunJar[root@node1 /]# lsof -i:10000
COMMAND   PID USER   FD   TYPE DEVICE SIZE/OFF NODE NAME
java    10829 root  522u  IPv6 244847      0t0  TCP *:ndmp (LISTEN)

关闭hive服务

[root@node1 /]# jps
2704 NodeManager
2209 DataNode
10946 Jps
10693 RunJar
3208 JobHistoryServer
2075 NameNode
2557 ResourceManager
10829 RunJar
您在 /var/spool/mail/root 中有新邮件
[root@node1 /]# kill -9 10693 10829 
[root@node1 /]# jps
2704 NodeManager
2209 DataNode
10946 Jps
3208 JobHistoryServer
2075 NameNode
2557 ResourceManager
[1]-  已杀死               nohup hive --service metastore
[2]+  已杀死               nohup hive --service hiveserver2

五.客户端连接[重点]

datagrip连接hive服务

创建datagrip项目

连接hive

 

配置驱动jar包 

 datagrip连接MySQL

六.数据仓库和数据库

数据仓库和数据库的区别 

数据库与数据仓库的区别:实际讲的是OLTP与OLAP的区别
OLTP(On-Line Transaction Processin):叫联机事务处理,也可以称面向用户交易的处理系统,  主要面向用户进行增删改查

OLAP(On-Line Analytical Processing):叫联机分析处理,一般针对某些主题的历史数据进行分析 主要面向分析,支持管理决策。

数据仓库主要特征:面向主题的(Subject-Oriented )、集成的(Integrated)、非易失的(Non-Volatile)和时变的(Time-Variant)

数据仓库的出现,并不是要取代数据库,主要区别如下:
    数据库是面向事务的设计,数据仓库是面向主题设计的。
    数据库是为捕获数据而设计,数据仓库是为分析数据而设计
    数据库一般存储业务数据,数据仓库存储的一般是历史数据。
    数据库设计是尽量避免冗余,一般针对某一业务应用进行设计,比如一张简单的User表,记录用户名、密码等简单数据即可,符合业务应用,但是不符合分析。
    数据仓库在设计是有意引入冗余,依照分析需求,分析维度、分析指标进行设计。

数据仓库基础三层结构

 

 源数据层(ODS):此层数据无任何更改,直接沿用外围系统数据结构和数据,不对外开放;为临时存储层,是接口数据的临时存储区域,为后一步的数据处理做准备。

数据仓库层(DW):也称为细节层,DW层的数据应该是一致的、准确的、干净的数据,即对源系统数据进行了清洗(去除了杂质)后的数据。

数据应用层(DA或APP):前端应用直接读取的数据源;根据报表、专题分析需求而计算生成的数据。

 ETL和ELT

广义上ETL:数据仓库从各数据源获取数据及在数据仓库内的数据转换和流动都可以认为是ETL(抽取Extract, 转化Transform , 装载Load)的过程。

但是在实际操作中将数据加载到仓库却产生了两种不同做法:ETL和ELT。

狭义上ETL: 先从数据源池中抽取数据,数据保存在临时暂存数据库中(ODS)。然后执行转换操作,将数据结构化并转换为适合目标数据仓库系统的形式,然后将结构化数据加载到数据仓库中进行分析。

ELT: 从数据源中抽取后立即加载。没有专门的临时数据库(ODS),这意味着数据会立即加载到单一的集中存储库中,数据在数据仓库系统中直接进行转换,然后进行分析

 七.hive数据库操作

基本操作[掌握]

创建数据库: create database [if not exists] 库名 [location '路径'];

使用数据库: use 库名;

注意: location路径默认是:  hdfs://node1:8020/user/hive/warehouse/库名.db

删除数据库: drop database 数据库名 [cascade];

-- hive库的核心操作
-- 创建数据库
-- 注意: 默认location路径是/user/hive/warehouse/库名.db
-- 库路径: /user/hive/warehouse/hive1.db
create database hive1;
-- 库路径: /user/hive/warehouse/test.db
create database test;
-- 使用库
use hive1;
-- 注意: 建库的时候可以使用location修改数据库路径
-- 库路径: /test1
create database test1 location '/test1';-- 为了方便演示location效果,可以先去分别创建一个简单的表
-- 表路径:/user/hive/warehouse/hive1.db/stu
create table hive1.stu(id int,name string);
-- 表路径:/test1/stu
create table test1.stu(id int,name string);-- 演示删除空数据库
drop database test;
-- 盐水删除非空数据库
drop database test1; -- 报错,hive比较特殊,drop不能直接删除有表的库
-- drop+cascade能够删除有表的库
drop database test1 cascade ;

其他操作[了解]

创建数据库: create database [if not exists] 库名 [comment '注释'] [location '路径'] [with dbproperties ('k'='v')];

修改数据库路径: alter database 库名 set location 'hdfs://node1.itcast.cn:8020/路径'
修改数据库属性: alter database 库名 set dbproperties ('k'='v');

查看所有的数据库: show databases;
查看某库建库语句: show create database 库名;
查看指定数据库信息: desc database 库名;
查看指定数据库扩展信息: desc database extended 库名;
查看当前使用的数据库: select current_database();

-- hive库的其他操作
-- schema在hive/mysql中相当于database关键字
create schema demo1;
-- comment: 建库的时候可以添加注释,建议不要中文,因为乱码
-- location: 建表的时候可以指定hdfs上库目录路径,建议使用默认路径/user/hive/warehouse/库名.db
-- with dbproperties: 建表的时候可以设置属性,格式是k=v,了解即可
create database demo2comment 'database'location '/user/hive/warehouse/demo2.db'with dbproperties ('name' = 'bz666');
create database demo3;-- 查看指定库的建库语句
show create database demo2;
show create database demo3;
-- 查看所有的数据库
show databases;
-- 查看当前使用数据库
select current_database();
-- 查看指定库的基本信息
desc database demo2;
-- 查看指定库的扩展信息
desc database extended  demo2;-- 修改location路径
-- 注意: 必须是绝对路径,而且修改后的路径如果不存在,不会直接创建
alter database demo2 set location 'hdfs://node1.itcast.cn:8020/demo2.db';
-- 以后建表的时候自动创建
create table demo2.stu(id int,name string);
-- 再次查看指定库的扩展信息
desc database extended  demo2;-- 修改dbproperties
alter database demo2 set dbproperties('name'='binzi');
-- 再次查看指定库的扩展信息
desc database extended  demo2;

八.Hive表概述

建表语法

create [external] table [if not exists] 表名(字段名 字段类型 , 字段名 字段类型 , ... )
[partitioned by (分区字段名 分区字段类型)] # 分区表固定格式
[clustered by (分桶字段名)  into 桶个数 buckets]  # 分桶表固定格式 注意: 可以排序[sorted by (排序字段名 asc|desc)]
[row format delimited fields terminated by '字段分隔符'] # 自定义字段分隔符固定格式
[stored as textfile]  # 默认即可
[location 'hdfs://node1.itcast.cn:8020/user/hive/warehouse/库名.db/表名'] # 默认即可
; # 注意: 最后一定加分号结尾

注意: 关键字顺序是从上到下从左到右,否则报错

数据类型

 基本数据类型:  整数: int  小数: float double  字符串: string varchar(长度)  日期: date timestamp

复杂数据类型:  集合: array  映射: map   结构体: struct  联合体: union 

表分类 

 Hive中可以创建的表有好几种类型, 分别是:
内部表(管理表): MANAGED_TABLE
    分区表
    分桶表
外部表(非管理表): EXTERNAL_TABLE
    分区表
    分桶表
    
default默认库存储路径: hdfs://node1.itcast.cn:8020/user/hive/warehouse   
自定义库在HDFS的默认存储路径: hdfs://node1.itcast.cn:8020/user/hive/warehouse/库名.db
自定义表在HDFS的默认存储路径: hdfs://node1.itcast.cn:8020/user/hive/warehouse/库名.db/表名
业务数据文件在HDFS的默认存储路径: hdfs://node1.itcast.cn:8020/user/hive/warehouse/库名.db/表名/业务数据文件

内部表和外部表区别?
内部表: 未被external关键字修饰的即是内部表, 即普通表。 内部表又称管理表,还可以叫托管表
    删除内部表:直接删除元数据(metadata)和存储数据本身
外部表: 被external关键字修饰的即是外部表, 即关联表。 还可以叫非管理表或非托管表
    删除外部表:仅仅是删除元数据(metadata),不会删除存储数据本身

-- 内部表(又叫管理表或者托管表)
create table stu1(id int,name string
);
-- 外部表(又叫非管理表,非托管表)
create external table stu2(id int,name string
);
-- 查看表结构
desc stu1;
desc stu2;
-- 查看表格式化信息
desc formatted stu1; -- 内部表类型: managed_table
desc formatted stu2; -- 外部表类型: external_table-- 演示内外部表的重点区别
-- 删除内部表(管理表/托管表),会删除表相关的所有数据
insert into stu1 values(1,'张三');
drop table stu1;
-- 删除外部表,只删除了元数据,hdfs中业务数据保留
insert into stu2 values(1,'张三');
drop table stu2;
-- 再次建表后,可以使用location重新关联原来hdfs保留的业务数据
create external table stu22(id int,name string
)location '/user/hive/warehouse/hive1.db/stu2';
-- 验证数据
select * from stu22 limit 10;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/185692.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python+Selenium+Unittest 之selenium12--WebDriver操作方法2-鼠标操作1(ActionChains类简介)

在我们平时的使用过程中,会使用鼠标去进行很多操作,比如鼠标左键点击、双击、鼠标右键点击,鼠标指针悬浮、拖拽等操作。在selenium中,我们也可以去实现常用的这些鼠标操作,这时候就需要用到selenium中的ActionChains类…

SQL第三次上机作业

1.查询与王利就读同一专业学生的借书证号和姓名 USE TSGL GO SELECT Lno,Rname FROM Reader WHERE Dept(SELECT DeptFROM ReaderWHERE Rname王利) and Rname ! 王利2.查询比希望出版社出版的所有图书价格都高的图书信息 SELECT * FROM Book WHERE Price>(SELECT MAX(Price…

5G-DFS最新动态-产品不在需要走FCC官方测试

添加图片注释,不超过 140 字(可选) 最近,FCC公布了最新版本的PAG(Product Acceptance Group)清单,即388624 D02 Pre-Approval Guidance List v18r04。这个清单的主要改变是将带有雷达侦测功能的…

AVL树详解

目录 AVL树的概念 旋转的介绍 单旋转 双旋转 旋转演示 具体实现 通过高度判断的实现 通过平衡因子判断的实现 AVL树的概念 AVL树是一种自平衡的平衡二叉查找树,它是一种高效的数据结构,可以在插入和删除节点时保持树的平衡,从而保证…

【容器化】Docker

文章目录 概述环境配置的难题虚拟机Linux 容器Docker 核心概念安装命令启动与停止命令镜像相关命令容器相关命令 部署MySQL 部署Tomcat 部署Nginx 部署Redis 部署 迁移与备份Dockerfile 制作镜像Docker 私有仓库将镜像上传到私有仓库从私有仓库拉取镜像 来源 概述 环境配置的难…

pyspark将数据多次插入表的时候报错

代码 报错信息 py4j.protocol.Py4JJavaError: An error occurred while calling o129.sql. : org.apache.spark.sql.catalyst.parser.ParseException: mismatched input INSERT expecting <EOF>(line 12, pos 0) 原因 插入语句结束后没有加&#xff1b;结尾 把两个&am…

原子化 CSS 真能减少体积么?

前言 最近看到这样一篇文章&#xff1a;《要喷也得先做做功课吧&#xff1f;驳Tailwind不好论》 个人觉得说的还是有一定道理的&#xff0c;就是该作者的语气态度可能稍微冲了点&#xff1a; 不过他说的确实有道理&#xff0c;如果这种原子化工具真的如评论区里那帮人说的那么…

asp.net core mvc之路由

一、默认路由 &#xff08;Startup.cs文件&#xff09; routes.MapRoute(name: "default",template: "{controllerHome}/{actionIndex}/{id?}" ); 默认访问可以匹配到 https://localhost:44302/home/index/1 https://localhost:44302/home/index https:…

idea使用gradle教程 (idea gradle springboot)2024

这里白眉大叔&#xff0c;写一下我工作时候idea怎么使用gradle的实战步骤吧 ----windows 环境----------- 1-本机安装gradle 环境 &#xff08;1&#xff09;下载gradle Gradle需要JDK的支持&#xff0c;安装Gradle之前需要提前安装JDK8及以上版本 https://downloads.gra…

【遮天】叶凡首次高燃时刻,暴打姜峰逼其下跪,故事逐渐燃情

Hello,小伙伴们&#xff0c;我是小郑继续为大家深度解析国漫资讯。 深度爆料&#xff0c;《遮天》国漫30集剧情最新内容解析&#xff0c;前面剧情中&#xff0c;叶凡被姜峰如疯狗一般追杀&#xff0c;他像一只被狼群追逐的鹿&#xff0c;在山林中亡命逃窜。身后是姜峰那歇斯底…

el-date-picker精确到分钟

0 效果 1 代码 使用format、value-format属性格式化即可 :clearable“false” // 取消删除图标 注意&#xff1a; format&#xff1a;“yyyy-MM-dd HH:mm” 小时默认是从00:00开始 format&#xff1a;“yyyy-MM-dd hh:mm” 小时默认是从12:00开始

torch.cumprod实现累乘计算

cumprod取自“cumulative product”的缩写&#xff0c;即“累计乘法”。 数学公式为&#xff1a; y i x 1 x 2 x 3 . . . x i y_ix_1\times{x_2}\times{x_3}\times{...}\times{x_i} yi​x1​x2​x3​...xi​ 官方链接&#xff1a;torch.cumprod 用法&#xff1a; impo…

代码随想录训练营Day1:二分查找与移除元素

本专栏内容为&#xff1a;代码随想录训练营学习专栏&#xff0c;用于记录训练营的学习经验分享与总结。 文档讲解&#xff1a;代码随想录 视频讲解&#xff1a;二分查找与移除元素 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;C &#x1f69a…

基于CLIP的图像分类、语义分割和目标检测

OpenAI CLIP模型是一个创造性的突破&#xff1b; 它以与文本相同的方式处理图像。 令人惊讶的是&#xff0c;如果进行大规模训练&#xff0c;效果非常好。 在线工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D…

算法进阶指南图论 道路与航线

其实再次看这题的时候。想法就是和强连通分量有关&#xff0c;我们很容易发现&#xff0c;题目中所说的双向边&#xff0c;就构成了一个强连通分量&#xff0c;而所谓的单向边&#xff0c;则相当于把强连通分量进行缩点&#xff0c;然后整个图成为了一个DAG&#xff0c;众所周知…

go程序获取工作目录及可执行程序存放目录的方法-linux

简介 工作目录 通常就是指用户启动应用程序时&#xff0c;用户当时所在的文件夹的绝对路径。 如&#xff1a;root用户登录到linux系统后&#xff0c;一顿cd&#xff08;change directory&#xff09;后, 到了/tmp文件夹下。此时&#xff0c;用户要启动某个应用程序&#xff0…

Mybatis-Plus同时使用逻辑删除和唯一索引的问题及解决办法

1 问题背景 在开发中&#xff0c;我们经常会有逻辑删除和唯一索引同时使用的情况。但当使用mybatis plus时&#xff0c;如果同时使用逻辑删除和唯一索引&#xff0c;会报数据重复Duplicate entry的问题。 举例来说&#xff0c;有表user&#xff0c;建立唯一索引&#xff08;u…

Qt实现动态桌面小精灵(含源码)

目录 一、设计思路 二、部分源码演示 三、源码地址 🌈write in front🌈 🧸大家好,我是三雷科技.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流. 🆔本文由三雷科技原创 CSDN首发🐒 如需转载还请通知⚠️ 📝个人主页:三雷科技🧸—CSDN博客 🎁欢…

了解高防服务器的工作原理

在当今互联网时代&#xff0c;网络安全问题日益突出&#xff0c;各种网络攻击层出不穷。为了保护企业的网络安全&#xff0c;高防服务器应运而生。那么&#xff0c;你是否了解高防服务器的工作原理呢?下面就让我们一起来探索一下。 高防服务器是一种能够有效抵御各种网络攻击的…