17. 机器学习 - 随机森林

茶桁的AI秘籍 核心基础 17

Hi,你好。我是茶桁。

我们之前那一节课讲了决策树,说了决策树的优点,也说了其缺点。

决策树实现起来比较简单,解释解释性也比较强。但是它唯一的问题就是不能拟合比较复杂的关系。

后来人们为了解决这个问题,让其能够拟合更加复杂的情况,提出来了一种模型,这种模型就叫做随机森林。

随机森林

随机森林之所以叫随机森林,是因为它是由多棵树组成。它结合了决策树和随机性的概念,用于解决分类和回归问题,随机森林由多个决策树组成,每棵树都是随机构建的。

随机森林其核心组成部分是决策树,为了提高模型的性能和泛化能力,所以引入了两种主要形式的随机性。

第一种就是随机选择样本,对于每棵决策树的构建,随机森林从训练数据中随机抽取一部分样本(有放回地抽样), 这称为自助采样(Bootstrap Sampling)。这就使得每棵树都在不同的样本子集上进行训练,增加了模型的多样性。

Alt text

第二种是随机选择特征,在每个节点上,随机森林只考虑特征的一个子集来进行分割决策,而不是考虑所有特征。这确保了每棵树的分裂过程是不同的,增加了多样性。

对于分类问题,随机森林中的每棵决策树都会对输入数据进行分类,那对于回归问题,就会变成是每棵决策树都会对输入数据进行预测了。最后的预测结果是通过对所有树的投票或平均值来获得的。这种集成方法可以减小过拟合奉先,提高模型的稳定性和泛化能力。

Alt text

  1. 使用随机森林来预测。
  2. 在预测之前呢,我们使用 Out-Of-Bagging 样本来评估我们的模型。这个bagging就是袋子,就是我们从袋子里随机取东西去衡量。
  3. 使用评估结果,我们可以选择合适的变量数。

随机森林的原理其实很简单,是一个非常简单但是非常好用的一个方法。基本上,除了深度学习之外,也是企业用的最多的方法之一。咱们在这里就来演示一下随机森林的作用以及效果:

from sklearn.datasets import load_iris
iris = load_iris()x = iris.data
y = iris.target
print(x, y)

Alt text

这个是我们用sklearn里面鸢尾花分类的数据做个简单例子,快速的展现一下它的效果。我们将数据拿到以后,x是鸢尾花的四个维度,四个维度对应了它的一个类别。

from sklearn.tree import DecisionTreeClassifiertree_clf = DecisionTreeClassifier()
tree_clf.fit(x, y)tree_clf.feature_importances_---
array([0.02666667, 0.        , 0.05072262, 0.92261071])

我们fit完之后就可以看到,这四个feature中,最终要的是第四个feature。然后是第三个,第二个根本就没用。

from sklearn.model_selection import train_test_splittrain_x, test_x,train_y, test_y = train_test_split(x, y, test_size=0.3, random_state=0)tree_clf = DecisionTreeClassifier()
tree_clf.fit(train_x, train_y)print(tree_clf.score(train_x, train_y))
print(tree_clf.score(test_x, test_y))---
1.0
0.9777777777777777

看结果我们其实可以看到,这个拟合度有点太高了。我们换个数据再来看, 还是之前的课程中我们用到的Boston房价的数据,不过因为这个是一个回归问题,所以我们需要用回归预测的方法:

from sklearn.tree import DecisionTreeRegressor
from sklearn.datasets import fetch_openml
dataset = fetch_openml(name='boston', version=1, as_frame=True, return_X_y=False, parser='pandas')data = dataset['data']
target = dataset['target']x_train, x_test, y_train, y_test = train_test_split(data, target, test_size=0.2)tree_reg = DecisionTreeRegressor()
tree_reg.fit(x_train, y_train)print('whole dataset train acc: {}'.format(tree_reg.score(x_train, y_train)))
print('whole dataset test acc: {}'.format(tree_reg.score(x_test, y_test)))---
whole dataset train acc: 1.0
whole dataset test acc: 0.6606392933985246

现在我们来看,它的train上的score准确度是1.0,在test上是0.81,这个是全数据量测试的情况。

然后我们来定义一个函数:

def random_forest(x_train, y_train, x_test, y_test, drop_n=4):features_random = np.random.choice(list(x_train.columns), size=len(x_train.columns)-drop_n)x_sample = x_train[features_random]y_sample = y_trainreg = DecisionTreeRegressor()reg.fit(x_sample, y_sample)score_train = reg.score(x_sample, y_sample)score_test = reg.score(x_test[features_random], y_test)print('sub sample :: train score: {}, test score: {}'.format(score_train, score_test))y_predicated = reg.predict(x_test[features_random])return y_predicated

咱们随机的从data里面取一些数据,之后我们来看一下单个树的结果:

with_feature_names = pd.DataFrame(data)
with_feature_names.columns = dataset['feature_names']x_train, x_test, y_train, y_test = train_test_split(with_feature_names, target, test_size=0.3, random_state=0)random_forest(x_train, y_train, x_test, y_test, 4)---
sub sample :: train score: 1.0, test score: 0.5171643497313849

单个的结果显然是要比整个的数据量要差。那么咱们现在看一下最终的结果,把它变成一个森林:

tree_num = 4
predicates = []
for _ in range(tree_num):predicated, score = random_forest(x_train, y_train, x_test, y_test)predicates.append((predicated))print('the mean result is: {}'.format(np.mean(predicates), axis=0))
print('the score of forest is: {}'.format(r2_score(y_test, np.mean(predicates, axis=0))))---
the mean result is: 21.614144736842107
the score of forest is: 0.7194989474162439

从一开始到现在完整的打印结果为:

whole dataset train acc: 1.0
whole dataset test acc: 0.6606392933985246ssub sample :: train score: 1.0, test score: 0.5885292814825753
sub sample :: train score: 1.0, test score: 0.559086368163823
sub sample :: train score: 1.0, test score: 0.6119989116140754
sub sample :: train score: 1.0, test score: 0.21831688326567122the mean result is: 21.614144736842107
the score of forest is: 0.7194989474162439

这是个很典型的例子,使用全量的数据集,它的结果最终的在test集上是0.66,然后基本上每个的结都比它要差一些。但当我们用了森林的值做了平均之后,这个值就变得更好了。

当然其实这个值并不是每次都是如此,在我们进行计算的时候,因为数据什么的都是随机的,偶尔也会出现取均值之后变的更差的情况。不过大部分时候,都会更好一些。

我们现在再将结果稍微改一改:

def random_forest(x_train, y_train, x_test, y_test, drop_n=4):...return y_predicated, score_testtree_num = 4
predicates = []
for _ in range(tree_num):predicated, score = random_forest(x_train, y_train, x_test, y_test)predicates.append((predicated, score))predicates_value = [v for v, s in predicates]
forest_scores = [s for v, s in predicates]print('the score of forest is: {}'.format(r2_score(y_test, np.mean(predicates_value, axis=0))))weights = np.array(forest_scores) / np.sum(forest_scores)
score_weights = np.zeros_like(np.mean(predicates_value, axis=0))for i, v in enumerate(predicates_value):score_weights += v * weights[i]print('the score of weighted forest is: {}'.format(r2_score(y_test, score_weights)))---
the score of forest is: 0.7049603534192553
the score of weighted forest is: 0.7204901503020483

后面这段代码呢,其实就是人们发现用了随机森林之后,效果明显要好了,那一些人就想如果在知道每一次的test_score之后,能不能给test_score比较高的值加一个比较大的权重。

也就是说,当我知道test_score比较好,那在最后做决策的时候给它加的权重大一些。

最后我们打印了常规状态下森林的结果和加权之后的结果。加权之后的结果又变得好了一些。

Adaboost

然后人们沿着这个思路,就做了一件事情,就是Adaboost(Adaptive Boosting):

Alt text

Adaboost就是在随机森林的权重思路上做了一个优化,它的示意图也是有多个weak classifier, 然后最后有一个Weighted Voter, 这是一个权重的投票,这个就和我们上面加权的那部分代码非常的类似。只不过它在这里做了个细化:

Alt text

我们来注意看最后一个公式:

H ( x ) = s i g n ( ∑ t = 1 T α t h t ( x ) ) H(x) = sign(\sum_{t=1}^T\alpha_th_t(x)) H(x)=sign(t=1Tαtht(x))

公式里的 α t \alpha_t αt就是它的权重,最终的H(x)就是很多 α t ⋅ h t ( x ) \alpha_t \cdot h_t(x) αtht(x)加在一起的结果。这里的这个 α t \alpha_t αt就是每一次小的数的权重:v * weights[i]。这个权重就不是像咱们刚才代码里那样根据score的大小简单的做个加权。

我们看上图中间又一个 α t \alpha_t αt的公式:

α t = 1 2 l n ( 1 − ε t ε t ) \begin{align*} \alpha_t = \frac{1}{2}ln(\frac{1-\varepsilon_t}{\varepsilon_t}) \end{align*} αt=21ln(εt1εt)

然后我们再往上倒腾, ε t \varepsilon_t εt是当你预测出来这个值和实际值错的越多, 越趋近于1。如果完全没有错,一个错都没有的情况下,那么 ε t = 0 \varepsilon_t=0 εt=0

ε t = P r i ∼ D t [ h t ( x i ) ≠ y i ] \begin{align*} \varepsilon_t = Pr_{i\sim D_t}[h_t(x_i)\ne y_i] \end{align*} εt=PriDt[ht(xi)=yi]

如果 ε t = 1 \varepsilon_t = 1 εt=1的话, 那就是 1 − ε t ε t \frac{1-\varepsilon_t}{\varepsilon_t} εt1εt就是:1-1/1=0。ln0等于什么呢?它等于负的无穷大,那么 α t \alpha_t αt等于就没有。如果 ε t = 0 \varepsilon_t = 0 εt=0 l n ( 1 − ε t ε t ) ln(\frac{1-\varepsilon_t}{\varepsilon_t}) ln(εt1εt)就是无穷大。

也就是说,随着 ε t \varepsilon_t εt越大, 那 α t \alpha_t αt会越大,随着 ε t \varepsilon_t εt越小, α t \alpha_t αt也会越小。而且在这个地方是呈指数变化的,就是误差会对 α t \alpha_t αt的变化影响的很大。

除了用指数的东西来做,它还有一个很重要的特性, 这个特性才在我们整个Adaboost里非常重要:

D t + 1 ( i ) = D t ( i ) e x p ( − α t y i h t ( x i ) ) Z t D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_ty_ih_t(x_i))}{Z_t} Dt+1(i)=ZtDt(i)exp(αtyiht(xi))

我们先来看 y i h t ( x i ) y_ih_t(x_i) yiht(xi)这部分,假设ht(xi)=1, yi预测对了等于1, yi预测错了等于-1。那如果预测错了,这整个部分都等于-1,如果预测对了,这里就是1。

前面有一个负号: − α t y i h t ( x i ) -\alpha_ty_ih_t(x_i) αtyiht(xi),那肯定是要变号的。也就是说,如果预测错了,那么这一串东西应该是正的,如果预测对了这一串东西应该是负的。

前面是什么,是 D t + 1 ( i ) D_{t+1}(i) Dt+1(i), 这里其实就是第i个训练元素在 D t + 1 D_{t+1} Dt+1被取到的概率。那么我们最前面有表示 D 1 ( i ) = 1 m D_1(i) = \frac{1}{m} D1(i)=m1, 也就是说,所有元素被取到的概率都是一样的,是平均的。那第二次的概率就是: D 1 ( i ) ⋅ e x p ( . . . ) D_1(i)\cdot exp(...) D1(i)exp(...), exp就是e的多少次方。

那我们现在知道,如果预测对了,这里是-1, 预测错了这里是1, 都要再乘以 α t \alpha_t αt。那么如果预测对了,这里是 − α t -\alpha_t αt, 那exp这里就是小于1的。那如果预测错了呢,exp就是大于1的。

如果exp大于1,那么 D t + 1 ( i ) D_{t+1}(i) Dt+1(i)概率就会被 D t ( i ) D_t(i) Dt(i)的概率要更大,反之就会更小。

这个就是我们Ada的含义,Ada就是Adaptive, 就是动态调整的意思。也就是通过这种方法实现的。

如果此时此刻 x i x_i xi算对了,那下一次就更不容易被取到,如果算错了,那下一次训练就会更有可能被取到。

觉得绕的小伙伴去理解这样一个例子:如果你是个学生去做卷子,那么你作对的题还会反复去做吗?肯定是不会的题才会反复刷,刷到自己会为止。

Gradient Boosting

除了Adaboost之外,后来人们又提出来了一个新的方法: Gradient Boosting。

Alt text

Gradient Boosting和Adaboost的核心原理很像:

l o s s ( p , q ) = − ∑ i ∈ o u t p u t c l a s s e s p ( x ) l o g q ( x ) loss(p, q) = -\sum_{i\in output classes}p(x)logq(x) loss(p,q)=ioutputclassesp(x)logq(x)

Gradient Boosting主要用于解决回归和分类问题。它基于决策树(通常是浅层决策树)构建模型,通过迭代改进预测的准确性。

其最核心的就是梯度提升,是一种集成学习方法。将多个弱预测模型,也就是决策树组合在一起,以提高整体性能。每个决策树在不同的数据子集上训练,然后进行组合以生成最终的预测。其核心原理就是通过迭代优化损失函数来构建模型。

在每一步中,模型的更新方向就是损失函数的负梯度。假设我们有一个损失函数L(y, f(x)), 其中y是真实标签, f(x)是当前模型的预测,梯度提升的目标是找到一个新的模型h(x), 使得损失函数L(y, f(x) + h(x))最小化。

梯度提升使用负梯度方向的决策树h(x)来拟合当前模型的残差,因此可以通过以下方式迭代更新模型:

f ( x ) = f ( x ) + l e a r n i n g _ r a t e ⋅ h ( x ) f(x) = f(x) + learning\_rate \cdot h(x) \\ f(x)=f(x)+learning_rateh(x)

也就是说,它其实要变成这样一个式子:

B o o s t e d E n s e m b l e = F i r s t T r e e + η ⋅ S e c o n d T r e e l o s s ( B o o s t e d E n s e m b l e ) < l o s s ( F i r s t T r e e ) Boosted Ensemble = First Tree + \eta \cdot Second Tree \\ loss(Boosted Ensemble) < loss(First Tree) BoostedEnsemble=FirstTree+ηSecondTreeloss(BoostedEnsemble)<loss(FirstTree)

也就是说,我们第二波的h_t(x),也就是h_2(x),前面乘以一个 η \eta η,这个 η \eta η是等于Learning Rate的,然后h_2(x)加上h_1(x)最后得到的结果,要比h_1(x)的loss值更小。

Alt text

那么我们现在要做的就是改变 η \eta η的权重,这个东西的权重就是和之前我们在随机森林里调整权重不同。

一开始,梯度提升初始化一个简单的模型,通常是一个常数,用来拟合目标变量的平均值。

对于每一个训练样本,计算模型的梯度。这表示模型对于每个样本的预测误差。

使用新的决策树来拟合梯度的负梯度,也就是模型的残差。这意味着构建一个决策树,其目标是减小之前模型的误差。

将新构建的决策树与之前的模型相加,以形成一个新的模型。这个过程重复进行多次,每次都会减小误差。

重复2到4步,直到满足某个停止条件,理入达到最大迭代次数或误差足够小。

最终模型是所有决策树的组合,可以用来进行预测。

那我们之前谈到的 η \eta η,也就是learning_rate,其实就是学习率,用于控制每次更新的幅度。

数学上,梯度提升通过迭代不断减小损失函数来逼近最优模型,这是一种梯度下降的优化方法,因此它的核心原理与梯度下降算法是密切相关的。

Grading Boost和AdaBoost的整个区别不大,它们都是属于Ensemble Learning,中文翻译是合唱团。

这个Ensemble Learning我们可以取很多个分类、回归,然后我们把它做好之后给它求一个平均值。

Alt text

比如这样,

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVClog_clf = LogisticRegression()
rnd_clf = RandomForestClassifier()
svm_clf = SVC()voting_clf = VotingClassifier(estimators = [('lr', log_clf),('rf', rnd_clf),('svc', svm_clf)], voting='hard')voting_clf.fit(x_train, y_train)
...

在sklearn的ensemble中本身就有一个VotingClassifier,也有RandomForestClassifier,我们可以直接用几个分类器可以实现。

AdaBoost和Gradient Boost也是属于一个典型的ensemble Learning。

那还有两个比较重要的东西,一个叫做Xgboost,一个叫做LightBGM,这两个是Grading Boost的升级版。它们被广泛的使用于机器挖掘,推荐系统等等。

当然这两块内容就不放在「核心基础」里讲了,将会在后面讲到BI专业课的时候专门的去讲,这两个是很重要的点。

那本节课讲完之后呢,咱们核心基础的部分,关于机器学习就跨过一个小阶段了。下一节课开始,我们要讲「深度学习」了。属于向前要跨一大步。

好,那咱们经典机器学习模型到今天就讲完了。各位看文章的小伙伴,自己去把这个课程再好好巩固一下,咱们下节课开始,就进入深度学习了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/186030.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为荣耀软开秋招面经问题整理

一、八股 1.linux常用命令 Linux常用命令&#xff08;面试题&#xff09;_linux常用命令面试题-CSDN博客 常用命令、系统命令、打包命令、vim、开关机命令 2.socket通信调用api过程 TCP UDP 3.进程和线程的区别 进程是系统进行资源分配和调度的基本单元&#xff0c;线程…

初阶JavaEE(15)(Cookie 和 Session、理解会话机制 (Session)、实现用户登录网页、上传文件网页、常用的代码片段)

接上次博客&#xff1a;初阶JavaEE&#xff08;14&#xff09;表白墙程序-CSDN博客 Cookie 和 Session 你还记得我们之前提到的Cookie吗&#xff1f; Cookie是HTTP请求header中的一个属性&#xff0c;是一种用于在浏览器和服务器之间持久存储数据的机制&#xff0c;允许网站…

【Linux】初识进程地址空间

❤️前言 大家好&#xff01;这里是好久没有营业的大懒虫lion&#xff0c;今天要和大家聊的内容是我最近新学习的关于进程地址空间的相关知识。 正文 当我们使用C/C语言进行内存管理时&#xff0c;经常会接触到这样的一张图片&#xff1a; 它常常被我们称作程序地址空间&#…

Netty 是如何利用EventLoop实现千万级并发的

经过前面几篇文章的介绍&#xff0c;我们掌握了 Netty 的 5 个核心组件&#xff0c;但是有了这 5 个核心组件 Netty 这个工厂还是无法很好的运转&#xff0c;因为缺少了一个最核心的组件&#xff1a;EventLoop&#xff0c;它 是 Netty 中最最核心的组件&#xff0c;也是 Netty …

使用C++的QT框架实现五子棋

最近有点无聊正好想玩五子棋&#xff0c;那就实现一下这个游戏吧&#xff0c;网上的五子棋逻辑又长又复杂&#xff0c;我这个逻辑还是蛮简单的&#xff0c;展示如下&#xff08;检测函数在最后&#xff09; 这是一个简单的五子棋&#xff0c;今天就了解一下这个游戏的思路&…

机器学习——回归

目录 一、线性回归 1、回归的概念&#xff08;Regression、Prediction&#xff09; 2、符号约定 3、算法流程 4、最小二乘法&#xff08;LSM&#xff09; 二、梯度下降 梯度下降的三种形式 1、批量梯度下降&#xff08;Batch Gradient Descent,BGD&#xff09;&#xff…

【2023.11.6】OpenAI发布会——近期chatgpt被攻击,不能使用

OpenAI发布会 写在最前面发布会内容GPT-4 Turbo 具有 128K 上下文函数调用更新改进了指令遵循和 JSON 模式可重现的输出和对数概率更新了 GPT-3.5 Turbo 助手 API、检索和代码解释器API 中的新模式GPT-4 Turbo 带视觉DALLE 3文字转语音 &#xff08;TTS&#xff09;收听语音样本…

[unity]切换天空盒

序 unity是自带天空盒的&#xff1a; 但有的时候不想用自带的。怎么自定义&#xff1f;如何设置&#xff1f; 官方文档 Unity - Manual: The Lighting window (unity3d.com) 相关窗口的打开方法 天空盒对应的选项 实际操作 从标准材质球到天空盒材质球 新建一个材质球&…

Powerpoint不小心被覆盖?PPT误删文件如何恢复?

PowerPoint不小心删除了&#xff0c;这可能是众多学生和工作人员最头痛的事情了。PPT被覆盖或误删可能意味着几个小时的努力付之东流。那么PPT覆盖的文档要如何救回来呢&#xff1f;小编将会在本篇文章中为大家分享几个解决方案&#xff0c;使PPT文档覆盖还原操作成为可能&…

为什么有的孩子玩着玩着就成了学霸?

毫不夸张地说&#xff0c;几乎所有的父母都想养出聪明宝宝&#xff0c;孩子上学之后能成为学霸就更省心了。 可“聪明”毕竟不能量化&#xff0c;不是说让孩子上几天课就能提升的。很多家长都在促进孩子大脑发育上使足了劲&#xff0c;可到头来却发现是在做“无用功”。 事实…

Linux-命令行命令

注&#xff1a;[]的内容说明是可选的 1.ls ls [-a -l -h] [Linux路径] >如果没有参数&#xff0c;就展示当前工作目录的内容 > -a&#xff1a;all的意思&#xff0c;即列出所有文件&#xff08;包含隐藏文件/文件夹&#xff09; > -l&#xff1a;以列表形式展示内容&…

3、Dockerfile 深入与其他细节

Dockerfile 在 Docker 中创建镜像最常用的方式&#xff0c;就是使用 Dockerfile。Dockerfile 是一个 Docker 镜像 的描述文件&#xff0c;我们可以理解成火箭发射的 A、B、C、D…的步骤。Dockerfile 其内部包含了一 条条的指令&#xff0c;每一条指令构建一层&#xff0c;因此每…

代码随想录算法训练营第16天|104. 二叉树的最大深度111.二叉树的最小深度222.完全二叉树的节点个数

JAVA代码编写 104. 二叉树的最大深度 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3示例 2&#xff1a; …

鸡尾酒学习——原谅(自制)

1、材料&#xff1a;冰块、君度、蓝橙力娇酒、雪碧、橘子。 2、口感&#xff1a;甜味为主带着一丝丝酸味&#xff0c;喝起来比较清爽&#xff0c;没有一丝酒味的小甜酒。&#xff08;喜欢喝酒的可以多加酒&#xff0c;不喜欢喝酒的可以适量减少酒&#xff09; 3、视觉效果&…

cookie 里面都包含什么属性?

结论先行&#xff1a; Cookie 中除了名称和值外&#xff0c;还有几个比较常见的&#xff0c;例如&#xff1a; Domain 域&#xff1a;指定了 cookie 可以发送到哪些域&#xff0c;只有发送到指定域或其子域的请求才会携带该cookie&#xff1b; Path 路径&#xff1a;指定哪些…

MySQL:锁机制

目录 概述三种层级的锁锁相关的 SQLMyISAM引擎下的锁InnoDB引擎下的锁InnoDB下的表锁和行锁InnoDB下的共享锁和排他锁InnoDB下的意向锁InnoDB下的记录锁&#xff0c;间隙锁&#xff0c;临键锁记录锁&#xff08;Record Locks&#xff09;间隙锁&#xff08;Gap Locks&#xff0…

彻底删除Ubuntu双系统(联想小新2022)

彻底卸载Ubuntu双系统 以里联想小新pro16 i9-12900h为例子 把开机启动项设为默认Windows启动 以联想电脑为例子&#xff0c;关机后一直点击Fn F2进入Bios把windows启动项移到最上面&#xff0c;这样可以开机默认启动windows了删除ubuntu系统分区 使用磁盘管理软件 DiskGeniu…

【手把手教你】将python程序打包成exe可执行文件

1. 安装环境 pip install pyinstaller6.0.02. 打包文件 pyinstaller -D “要启动的文件名“.py比如我的命令就是&#xff1a;pyinstaller -D eval.py 执行完后&#xff0c;会生两个文件夹dist和bulib两个文件和一个xxx.spec文件 3. 删除生成的文件 删除生成的bulid和dist文…

19、Flink 的Table API 和 SQL 中的内置函数及示例(1)

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…

JAVA 版小程序商城免费搭建 多商家入驻 直播带货 商城系统 B2B2C 商城源码之 B2B2C产品概述

1. 涉及平台 平台管理、商家端&#xff08;PC端、手机端&#xff09;、买家平台&#xff08;H5/公众号、小程序、APP端&#xff08;IOS/Android&#xff09;、微服务平台&#xff08;业务服务&#xff09; 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前端框架…