nanodet训练自己的数据集、NCNN部署到Android

nanodet训练自己的数据集、NCNN部署到Android

    • 一、介绍
    • 二、训练自己的数据集
      • 1. 运行环境
      • 2. 数据集
      • 3. 配置文件
      • 4. 训练
      • 5. 训练可视化
      • 6. 测试
    • 三、部署到android
      • 1. 使用官方权重文件部署
        • 1.1 下载权重文件
        • 1.2 使用Android Studio部署apk
      • 2. 部署自己的模型【暂时存在问题】
        • 2.1 生成ncnn模型
        • 2.2 部署到android

一、介绍

看看作者自己的介绍吧

NanoDet-Plus 知乎中文介绍

NanoDet 知乎中文介绍

在这里插入图片描述

二、训练自己的数据集

1. 运行环境

conda create -n nanodet python=3.8 -y
conda activate nanodetconda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c conda-forgegit clone https://github.com/RangiLyu/nanodet.git
cd nanodetpip install -r requirements.txtpython setup.py develop

2. 数据集

该示例最后使用的是coco格式的标注文件,下方提供了一个voc转coco的脚本。

import os
from tqdm import tqdm
import xml.etree.ElementTree as ET
import jsonclass_names = ["cat", "bird", "dog"]def voc2coco(data_dir, train_path, val_path):xml_dir = os.path.join(data_dir, 'Annotations')img_dir = os.path.join(data_dir, 'JPEGImages')train_xmls = []for f in os.listdir(train_path):train_xmls.append(os.path.join(train_path, f))val_xmls = []for f in os.listdir(val_path):val_xmls.append(os.path.join(val_path, f))print('got xmls')train_coco = xml2coco(train_xmls)val_coco = xml2coco(val_xmls)with open(os.path.join(data_dir, 'coco_train.json'), 'w') as f:json.dump(train_coco, f, ensure_ascii=False, indent=2)json.dump(val_coco, f, ensure_ascii=False, indent=2)print('done')def xml2coco(xmls):coco_anno = {'info': {}, 'images': [], 'licenses': [], 'annotations': [], 'categories': []}coco_anno['categories'] = [{'supercategory': j, 'id': i + 1, 'name': j} for i, j in enumerate(class_names)]img_id = 0anno_id = 0for fxml in tqdm(xmls):try:tree = ET.parse(fxml)objects = tree.findall('object')except:print('err xml file: ', fxml)continueif len(objects) < 1:print('no object in ', fxml)continueimg_id += 1size = tree.find('size')ih = float(size.find('height').text)iw = float(size.find('width').text)img_name = fxml.strip().split('/')[-1].replace('xml', 'jpg')img_name = img_name.split('\\')img_name = img_name[-1]img_info = {}img_info['id'] = img_idimg_info['file_name'] = img_nameimg_info['height'] = ihimg_info['width'] = iwcoco_anno['images'].append(img_info)for obj in objects:cls_name = obj.find('name').textif cls_name == "water":continuebbox = obj.find('bndbox')x1 = float(bbox.find('xmin').text)y1 = float(bbox.find('ymin').text)x2 = float(bbox.find('xmax').text)y2 = float(bbox.find('ymax').text)if x2 < x1 or y2 < y1:print('bbox not valid: ', fxml)continueanno_id += 1bb = [x1, y1, x2 - x1, y2 - y1]categery_id = class_names.index(cls_name) + 1area = (x2 - x1) * (y2 - y1)anno_info = {}anno_info['segmentation'] = []anno_info['area'] = areaanno_info['image_id'] = img_idanno_info['bbox'] = bbanno_info['iscrowd'] = 0anno_info['category_id'] = categery_idanno_info['id'] = anno_idcoco_anno['annotations'].append(anno_info)return coco_annoif __name__ == '__main__':save_dir = './datasets/annotations' # 保存json文件的路径train_dir = './datasets/annotations/train/' # 训练集xml文件的存放路径val_dir = './datasets/annotations/val/' # 验证集xml文件的存放路径voc2coco(save_dir, train_dir, val_dir)

最后数据集的路径如下:

-datasets
|--images
|	|--train
|	|	|--00001.jpg
|	|	|--00004.jpg
|	|	|--...
|	|--val
|	|	|--00002.jpg
|	|	|--00003.jpg
|	|	|--...
|--annatotions
|	|--coco_train.json
|	|--coco_val.json

3. 配置文件

nanodet-m-416.yml为例,对照自己的数据集主要修改以下部分

model:head:num_classes: 3 # 数据集类别数data:train:img_path: F:/datasets/images/train # 训练集图片路径ann_path: F:/datasets/annotations/coco_train.json # 训练集json文件路径val:img_path: F:/datasets/images/val # 验证集图片路径ann_path: F:/datasets/annotations/coco_val.json # 验证集json文件路径device:gpu_ids: [0] # GPUworkers_per_gpu: 8 # 线程数batchsize_per_gpu: 60 # batch sizeschedule:total_epochs: 280 # 总epoch数val_intervals: 10 # 每10个epoch进行输出一次对验证集的识别结果class_names: ["cat", "bird", "dog"] # 数据集类别

4. 训练

python tools/train.py config/legacy_v0.x_configs/nanodet-m-416.yml

如果训练中途断了,需要接着训练。首先修改nanodet-m-416.ymlresumeload_model这两行注释去掉,并将model_last.ckpt的路径补上(注意去掉注释后检查下这两行缩进是否正确),然后再python tools/train.py config/legacy_v0.x_configs/nanodet-m-416.yml

schedule:resume:load_model: F:/nanodet/workspace/nanodet_m_416/model_last.ckptoptimizer:name: SGDlr: 0.14momentum: 0.9weight_decay: 0.0001

报错:

OSError: [WinError 1455] 页面文件太小,无法完成操作。 Error loading "F:\Anaconda3\envs\
nanodet\lib\site-packages\torch\lib\shm.dll" or one of its dependencies.

方案:减小配置文件中线程数workers_per_gpu,或者直接设为0不使用并行。

5. 训练可视化

TensorBoard日志保存在./nanodet/workspace/nanodet_m_416路径下,可视化命令如下:

tensorboard --logdir=./nanodet/workspace/nanodet_m_416

在这里插入图片描述

6. 测试

方法一:

python demo/demo.py image --config config/legacy_v0.x_configs/nanodet-m-416.yml --model nanodet_m_416.ckpt --path test.jpg

方法二:

运行demo\demo-inference-with-pytorch.ipynb脚本(修改代码中from demo.demo import Predictorfrom demo import Predictor

在这里插入图片描述

三、部署到android

1. 使用官方权重文件部署

1.1 下载权重文件

1)在F:\nanodet\demo_android_ncnn\app\src\main路径下新建一个文件夹assets

2)将F:\nanodet\demo_android_ncnn\app\src\main\cpp\ncnn-20211208-android-vulkan路径下的nanodet-plus-m_416.binnanodet-plus-m_416.param复制到F:\nanodet\demo_android_ncnn\app\src\main\assets下,并重命名为nanodet.binnanodet.param

3)(可选)下载Yolov4和v5的ncnn模型到F:\nanodet\demo_android_ncnn\app\src\main\assets路径下;

在这里插入图片描述

1.2 使用Android Studio部署apk

使用Android Studio打开F:\nanodet\demo_android_ncnn文件夹,按照自己的安卓版本选择相应的Platforms,值得注意的是,NDK需要安装21.0.6113669版本的,否则会报错类似“No version of NDK matched the requested version 21.0.6113669. Versions available locally: 21.3.6528147”。【详细操作可以查看我之前的文章中的1.2节:【终端目标检测01】基于NCNN将YOLOX部署到Android】

在这里插入图片描述

部署结果:
在这里插入图片描述

2. 部署自己的模型【暂时存在问题】

2.1 生成ncnn模型
  • 先转换为onnx文件:
python tools/export_onnx.py --cfg_path config\legacy_v0.x_configs\nanodet-m-416.yml --model_path nanodet_m_416.ckpt
  • 再转换为ncnn模型:

使用在线转换https://convertmodel.com/

在这里插入图片描述

将转换后的bin和param文件放置到assets文件夹下,可以重命名为nanodet.bin和nanodet.param,也可以修改jni_interface.cpp文件中NanoDet::detector = new NanoDet(mgr, "nanodet_self-sim-opt.param", "nanodet_self-sim-opt.bin", useGPU);

2.2 部署到android

我使用的是nanodet-m-416.yml训练了自己的模型,按照官方的文档修改nanodet.h中超参数,make projectrun app都没有报错,但是手机运行程序时识别有问题(类别并不是我自己数据集的类别),暂时还没发现问题所在。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/186640.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Win10 + VS017 编译SQLite3.12.2源码

参考&#xff1a; [1] WIN10 VS2019下编译GDAL3.0PROJ6SQLite_gdal 3 win10编译-CSDN博客 [2] 如何编译SQLite-How To Compile SQLite-CSDN博客 如何生成静态库&#xff1a; 参考&#xff1a; WIN10 VS2019下编译GDAL3.0PROJ6SQLite_gdal 3 win10编译-CSDN博客 如何生成exe:…

105.am40刷机(linux)折腾记1-前期的准备工作1

前段时间在某鱼上逛的时候&#xff0c;发现一款3399的盒子只要150大洋&#xff0c;内心就开始澎拜&#xff0c;一激动就下手了3台&#xff0c;花了450大洋&#xff08;现在想想&#xff0c;心都碎了一地&#xff09;。 然后自己又来来回回折腾了几天&#xff0c;目前能跑上fire…

viple入门(四)

&#xff08;1&#xff09;行打印 主要用于在运行窗口中显示数据&#xff0c;打印完成后&#xff0c;自动换行。 注意事项&#xff1a;不可同时打印两个数据&#xff0c;例如 解决方案1&#xff1a;使用或并&#xff0c;使得每次进入行打印的数据只有一个&#xff0c;缺点&am…

2020年五一杯数学建模B题基于系统性风险角度的基金资产配置策略分析解题全过程文档及程序

2020年五一杯数学建模 B题 基于系统性风险角度的基金资产配置策略分析 原题再现 近年来&#xff0c;随着改革开放程度的不断提高&#xff0c;我国经济运行中的各种风险逐渐暴露并集中传导和体现于金融领域。党的“十九大”报告提出“守住不发生系统性金融风险的底线”要求&am…

「Verilog学习笔记」4位数值比较器电路

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点&#xff0c;刷题网站用的是牛客网 分析 这里要注意题目的“门级描述方式”&#xff0c;所以我们只能使用基本门电路&#xff1a;&,|,!,^,^~。 具体实现思路&#xff1a;通过真值表得出Y0 Y1 Y2的逻辑表达…

前端AJAX入门到实战,学习前端框架前必会的(ajax+node.js+webpack+git)(三)

知者乐水&#xff0c;仁者乐山。 XMLHttpRequest AJAX原理 - XMLHttpRequest 前面与服务器交互使用的不是axios吗&#xff1f; ajax并不等于axios 我们使用的axios的内部&#xff0c;实际上对XHR对象/原理 的封装 为什么还要学习ajax&#xff1f; ①在一些静态网站项目中…

rabbitMq虚拟主机概念

虚拟主机是RabbitMQ中的一种逻辑隔离机制&#xff0c;用于将消息队列、交换机以及其他相关资源进行隔离。 在RabbitMQ中&#xff0c;交换机&#xff08;Exchange&#xff09;用于接收生产者发送的消息&#xff0c;并根据特定的路由规则将消息分发到相应的队列中。而虚拟主机则…

矩阵起源荣获第八届“创客中国”深圳市中小企业创新创业大赛三等奖

近日&#xff0c;2023年第八届“创客中国”深圳市中小企业创新创业大赛圆满落下帷幕&#xff0c;矩阵起源&#xff08;深圳&#xff09;信息科技有限公司凭借项目”MatrixOne 新一代超融合异构云原生数据库”荣获企业组三等奖。 本届大赛由深圳市工业和信息化局、深圳市中小企业…

Vue入门教学——编写第一个页面

以Vue2.0为例子。 1、创建一个Vue项目 创建过程&#xff1a;Vue-cli&#xff08;脚手架&#xff09;的创建_vue脚手架创建项目命令-CSDN博客【注】项目名不能有大写字母。创建完毕后&#xff0c;使用VSCode打开项目文件夹&#xff08;其他编辑器也行&#xff09;。 2、运行项…

震裕科技-300953 三季报分析(20231108)

震裕科技-300953 基本情况 公司名称&#xff1a;宁波震裕科技股份有限公司 A股简称&#xff1a;震裕科技 成立日期&#xff1a;1994-10-18 上市日期&#xff1a;2021-03-18 所属行业&#xff1a;专用设备制造业 周期性&#xff1a;0 主营业务&#xff1a;精密级进冲压模具及下游…

【C语言 | 预处理】C语言预处理详解(二) —— #pragma指令介绍以及内存对齐、结构体大小

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

vite + electron引入itk报错

代码 import { readImageArrayBuffer } from itk-wasm console.log(readImageArrayBuffer)通过itk-wasm官网&#xff0c;创建新的项目vitevue&#xff08;vue2或者vue3&#xff09;&#xff0c;都没问题。加入electeon后包此错。通过排查&#xff0c;意外找到原因&#xff0c;…

直面LED Driver测试挑战,助力显示屏行业变中求变!

杭州亚运会开幕式惊艳世界&#xff0c;引发社会各界一致赞誉&#xff01;在大气浪漫的舞台效果中&#xff0c;LED屏、裸眼3D屏凭借“硬核科技”出圈&#xff0c;为大家带来科技、活力、诗意的“中国式浪漫”观赏体验。而这美轮美奂的LED呈现效果背后&#xff0c;主要依靠的是LE…

企业安全—三保一评

0x00 前言 本篇主要是讲解三保一评的基础知识&#xff0c;以及对为什么要进行这些内容的原因进行总结。 0x01 整体 1.概述 三保分别是&#xff0c;分保&#xff0c;等保&#xff0c;关保。 分保就是指涉密信息系统的建设使用单位根据分级保护管理办法和有关标准&#xff0c…

修改Android Studio默认的gradle目录

今天看了一下&#xff0c;gradle在C盘占用了40多G。我C盘是做GHOST的&#xff0c;放在这里不方便。所以就要修改。 新建目录名&#xff08;似乎无必要&#xff09; ANDROID_SDK_HOMEG:\SOFTWARES\android-sdk GRADLE_USER_HOMEG:\SOFTWARES\.gradle 修改目录 File->Setti…

【Cocos新手进阶】父级预制体中的数据列表,在子预制体中的控制方法!

本篇文章主要讲解&#xff0c;cocos中在预制体操作过程中&#xff0c;父级预制体生成的数据列表中&#xff0c;绑定了子预制体中的事件&#xff0c;在子预制体的时间中如何控制上级列表的具体操作教程。 日期&#xff1a;2023年11月10日 作者&#xff1a;任聪聪 一、实际效果情…

springcloud二手交易平台系统源码

开发技术&#xff1a; 大等于jdk1.8&#xff0c;大于mysql5.5&#xff0c;idea&#xff08;eclipse&#xff09;&#xff0c;nodejs&#xff0c;vscode&#xff08;webstorm&#xff09; springcloud springboot mybatis vue elementui mysql 功能介绍&#xff1a; 用户端&…

openvino学习(一)ubuntu20.04安装openvino2022

安装openvino2022要求 操作系统 Ubuntu 18.04 长期支持 (LTS)&#xff0c;64 位 Ubuntu 20.04 长期支持 (LTS)&#xff0c;64 位 软件 CMake 3.13 或更高版本&#xff0c;64 位 GCC 7.5.0&#xff08;适用于 Ubuntu 18.04&#xff09;或 GCC 9.3.0&#xff08;适用于 Ubunt…

人车实时精准管控!北斗让换流站作业更安全

换流站是高压直流输电系统的核心组成部分&#xff0c;对促进电网稳定运行、保障电力行业的可持续发展有着重要作用。长期以来&#xff0c;随着电网主变改扩建设工程的开展&#xff0c;站内作业人员安全管控压力随之增大&#xff0c;仅依靠传统的“人盯人”和“自主”管控模式较…

掌握互联网的未来:5G时代的新机遇

随着5G技术的快速发展&#xff0c;我们正步入一个全新的互联网时代。5G不仅仅是速度的飞跃&#xff0c;它还代表着无限的可能性和前所未有的创新机遇。本文将探讨5G如何重新定义互联网&#xff0c;并为您提供洞察如何抓住这波科技浪潮。 5G技术的核心优势 超高速度&#xff1a…