微信版大语言模型来了:跨时空对话李白、教你高情商说话,API在线试玩全都有...

鱼羊 梦晨 发自 凹非寺
量子位 | 公众号 QbitAI

大规模语言模型,微信版,来了!

并且甫一登场,就没藏着掖着:

论文、API接口、在线试玩网站……一条龙全都齐备。

续写文本、阅读理解等常规任务就不说了,这个名叫WeLM的AI,竟然直接让我和李白跨时空聊起了杜甫:

我:现在有一首关于你的歌,其中一句歌词是「要是能重来,我要选李白」,请问你自己有什么看法?

李白:我要选杜甫。

d1fa397bff2a1a6082351457d5fd0314.png

这还不算完,WeLM甚至还治好了我不会聊天的毛病,分分钟教会我如何高情商说话。

fcd47057db43be1c12b7361102035089.jpeg

这么一个AI,参数量不算大,目前处于百亿水平。

但值得关注的是,实验结果显示,它在18个中文语言任务里,效果堪比参数量是其25倍的模型

是不是有点手痒想上手一试了?先奉上链接,咱们再仔细说说,这波微信是怎么做到的。

体验链接:https://welm.weixin.qq.com/docs/playground/
API接口:https://welm.weixin.qq.com/docs/api/
论文地址:https://arxiv.org/abs/2209.10372

「学富五车」的大模型

微信语言大模型WeLM,全名Well-Read Language Model,也就是「学富五车的语言模型」

在翻译任务上,WeLM不光可以做到基本的,甚至三语夹杂也难不倒它。

7fbe52217f8015ac0e0e3718e2b29673.png

在文本续写任务上,只需给出开头就能生成适应不同风格的文本。

d70eab12d29be9944f7607804d9885dc.png

这种多语言、多任务能力是怎么做到的?

其实WeLM与著名的GPT-3是同类,都是自回归解码器结构,微信团队选择这种结构就是看中其在海量数据中掌握无穷范式的能力。

在具体实现方法上,WeLM还有两项特色。

一是采用RoPE相对位置编码,与传统的固定位置编码相比能更好处理长文本,比如理解整篇文章甚至整本书。

二是使用62k个token的SentencePiece并保留其中的空格和Tab,这样更有利于下游任务。

使用这些方法,WeLM总共设计了从13亿到100亿参数的三个版本,可按需调用。

c4db5ca42226680da0215d7d6100baf9.png

其中100亿参数的满血版WeLM在14项中文任务中整体表现超过同大小的模型,甚至在零样本任务上超过比它大25倍的模型。

这其中最大的秘诀就是精心准备的高质量训练数据上充分训练,也就是「学富五车」的含义所在。

高质量训练数据包括从Common Crawl下载的近两年中文网页、大量书籍、新闻、论坛数据和学术论文。

收集到的数据总量超过10TB,其中包含750G英文数据,中文中夹杂的英日韩语为了语义连贯也全部保留。

不过这还不算完,需要经过清洗、去重等一系列步骤才能算得上是高质量数据。

首先是去除噪声和脏数据,结合使用规则和模型检测后,超过87%的数据被过滤。

再利用SimHash算法去重,进一步过滤掉40%的数据。

接下来要去除一切和测评相关的数据,保证公平性,以 17-gram 为检测重复粒度再次过滤了0.15%的数据。

53095d1026c058c973967bd94619b574.png

一系列处理后留下的数据量为262B tokens,最后再对这些数据进行不同比重的采样,使数据平滑分布在各个话题上。

9a3b21e5e9b43b0301d1dbcd629edee9.png

对于预训练,团队认为当今多数大模型的训练都不够充分,WeLM 100亿参数版的训练量基本与1750亿的GPT-3相当(300B tokens),在128张A100上训练用了大概24天时间。

为了保证训练效率,WeLM在训练过程中还使用了完全可原地复现的形式,不管发生任何问题都能从最近的checkpoint恢复。

自1750亿参数的GPT-3之后,语言模型规模越来越大,到今年谷歌的PaLM已经达到5400亿,中文大模型同样有这个趋势。

可以看出微信团队选择了另一条路线,以高质量训练数据和高效训练做到「四两拨千斤」的效果。

到这一步WeLM已经有了不错的表现,不过接下来这个步骤再次将其零样本泛化能力提到新的高度

研究团队针对76个数据集各人工撰写10-20个Prompt,将原任务中的文本关系的标签和输入信息转化成流畅通顺的自然语言形式,更符合自回归语言模型的训练形式。

3dd08d426c2f4976e5389821506f4203.png

使用这些Prompt对模型微调后,相当于让模型学会了面对多样的Prompt该做什么。如果遇到相似Prompt形式的全新任务,也可以有更稳定的表现。

实验证明,在全量数据上微调后的模型在新的NLP任务上具备更优秀的零样本迁移能力,同时也使得微调变为一项一劳永逸的工作。

最后,研究团队还测试了WeLM的三个额外能力。

通过提供示例,WeLM可以对自己的决策作出解释,不过这种能力不太稳定,还需要进一步探索。

0daf5d6189e2537fdf7feec2466b1252.png

通过简单提问,WeLM可以对结果进行自我纠正和检查能力,为后续提高性能提供了可能方向。

952e14ac4a0486bc4a0ab5bf2b12a6f4.png

WeLM还表现出一定的记忆能力,如果输入内容完美匹配前文,即使内容很长、出现频次很低,模型依然可以准确的生成剩下的部分。

743fd2518309a7e6721ef304a8d731d0.png

最后再来总结一下,WeLM精通中文的同时掌握英日韩等多种外语、可以通过少样本或零样本学习执行全新任务,同时以合理尺寸做到与25倍参数量的模型相媲美使用成本较低,总之就是奔着实用性大规模落地去的。

同步开放在线体验与API,也是希望有想法的开发者能方便的用起来,让WeLM大模型真正实用的工具。

WeLM怎么用

具体来说,WeLM线上Demo目前释出的功能包括:对话-采访、阅读理解、翻译、改写、续写以及自由任务。

792b7d263ca0713b92a9ba9d12b3f5b6.png

在正式开始跟WeLM玩耍之前,记得要先给模型扔一段简单的「范文」,也就是「prompt」。

在线网站会给出一些默认的prompt,你也可以自行修改设计。需要遵循的设计原则是:

第一,描述清楚;第二,例子具备代表性(多个例子更好)。

以文本分类任务为例,prompt应该长这样:

f91d8e6580edc43679a228f1ded16588.png

其中的技巧包括,首先,把分类任务用自然语言清晰地表达出来,在上面这个示例中,「微博」即为输入,「类别」即为输出。

其次,在第一句的指令型描述中,需要把可能的分类结果都列出来。

最后,如果效果不佳,可以尝试加入更多例子,让WeLM更清楚你到底想要做怎样的任务。

另外,正如前文所说,WeLM拥有零样本学习能力。

所以直接把它当作问答搜索引擎来用,也不是不行(手动狗头)。

8f9536de04e092f37b84d8c0c926771c.png

如果你还想得到更多样化的生成结果,token数量、temperature等参数均可调整。

3a45d652d514a255406f8d75978e67e9.png

更重要的一点是,WeLM已开放API接口 。也就是说,如果身为开发者的你想在自己的App里用上这个大模型,填写调查问卷注册即可。

1306d361a0cca037b811b8ff0cb49016.png

One More Thing

说起来,这样的大模型要是真的落地应用了,妈妈岂不是再也不用担心我因为不会聊天而母胎solo ?

0df9d27e212e5df36ba68a6cc2cdd22c.png

比如说……

60abe84254e414092081f06e2b3c0540.jpeg

你还有什么有趣的脑洞?大胆招呼起来~

—  —

点这里👇关注我,记得标星哦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/18730.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

元语AI(ChatYuan): ChatGPT中文版尝试?功能型对话大语言模型.beta版

元语AI是什么 我们训练了一个叫做元语AI(ChatYuan)的模型,它可以通过对话形式进行交互。它可以回答问题,具有联系上下文的能力;可以写文章、写作业、写诗歌、做中英文间的翻译;一些法律等特定领域问题也可以…

李宏毅HW01——新冠疫情数据的预测

目的:熟悉熟悉pytorch 导入数据 !gdown --id 1kLSW_-cW2Huj7bh84YTdimGBOJaODiOS --output covid.train.csv !gdown --id 1iiI5qROrAhZn-o4FPqsE97bMzDEFvIdg --output covid.test.csv/Users/missbei/miniforge3/envs/NLP_search/lib/python3.8/site-packages/gdo…

基于Spark对美国新冠肺炎疫情数据进行分析

2020年美国新冠肺炎疫情数据分析 基于Spark对美国新冠肺炎疫情数据进行分析一、实验环境二、数据集加载三、使用Spark对数据进行分析四、数据可视化 基于Spark对美国新冠肺炎疫情数据进行分析 此案例以2020年美国新冠肺炎疫情数据作为数据集,以Python为编程语言&am…

Chinese medical dialogue data 中文医疗对话数据集

Chinese medical dialogue data 中文医疗对话数据集 Data_数据中有6个文件夹分别是: <Andriatria_男科> 94596个问答对 <IM_内科> 220606个问答对 <OAGD_妇产科> 183751个问答对 <Oncology_肿瘤科> 75553个问答对 <Pediatric_儿科> 101602个问答…

Python爬取新冠肺炎实时数据及其可视化分析

点赞、关注再看&#xff0c;养成良好习惯 Life is short, U need Python 初学Python&#xff0c;快来点我吧 案例&#xff1a;Python爬取新冠肺炎实时数据及其可视化分析 作者&#xff1a;PyQuant 博客&#xff1a;https://blog.csdn.net/qq_33499889 慕课&#xff1a;https:…

北大研究团队面向新冠疫情的数据可视化分析与模拟预测

本次pythonday开发者日活动有幸请到北京大学的陈宝权教授做分享&#xff0c;以下是陈教授近期进行的面向新冠疫情的数据可视化分析与模拟预测项目&#xff0c;陈教授将会在本次活动上做分享与答疑&#xff0c;欢迎大家参与&#xff01; 指导教师&#xff1a;陈宝权教授&#xf…

利用Python获取新冠状病毒肺炎的疫情数据并进行可视化分析,看不懂你打我

文章目录 数据挖掘案例&#xff1a;利用Python获取新冠状病毒肺炎的疫情数据并进行可视化分析一、疫情数据报告网站地址1.1 pyecharts介绍1.2 要用到的库1.3 爬取数据1.3.1 方法11.3.2 方法2&#xff08;采用&#xff09;1.地址2.自己来获取试试看 二、爬取的数据初查看三、爬取…

大数据实战 --- 世界新冠疫情数据分析

目录 开发环境 数据描述 功能需求 数据准备 统计计算 Hbase Hive 分析数据 开发环境 HadoopHiveSparkHBase 启动Hadoop&#xff1a;start-all.sh 启动zookeeper&#xff1a;zkServer.sh start 启动Hive&#xff1a; nohup hiveserver2 1>/dev/null 2>&1 &…

【Python】2020年美国新冠肺炎疫情数据分析

2020年美国新冠肺炎疫情数据分析 一、 需求描述二、 环境介绍三、 数据来源描述四、 数据上传及上传结果查看五、数据处理过程描述1、数据集下载2、格式转换3、启动Hadoop集群4、将文件上传至HDFS文件系统中5、使用Spark对数据进行分析6、读取文件生成DataFrame8、数据可视化 六…

数据分享|函数型数据分析部分省市新冠疫情数据

作者&#xff1a;Mingji Tang 统计学中传统的数据类型有截面数据和时间序列数据。这两者都只能在某一纵向或横向上探究数据&#xff0c;且部分前提条件又很难满足。而函数型数据连续型函数与离散型函数长期以来的分离状态&#xff0c;实现了离散和连续的过度。它很少依赖于模型…

利用Python爬取新冠肺炎疫情实时数据,Pyecharts画2019-nCoV疫情地图

前言 博客是2年前写的&#xff0c;中间有好多网友私信我获取源码及指出部分bug&#xff0c;感谢支持&#xff01; 取不到数据的原因是数据接口发生较大变化&#xff0c;最近刚好有时间&#xff0c;所以重新整理了一下。 第一部分 网页分析 数据源 腾讯疫情实时追踪 今天重新整…

新冠肺炎国内外疫情数据爬取

环境说明 爬虫环境&#xff1a; Python3 IDE:Pycharm 爬虫工具包&#xff1a; requests BeautifulSoup json 从腾讯新闻网爬取 使用chrome浏览器对腾讯新闻网进行页面元素审查&#xff0c;进入network&#xff0c;刷新&#xff0c;查看response&#xff1a; 寻找到这三个js文…

[Pyhon疫情大数据分析] 四.微博话题抓取及新冠肺炎疫情文本挖掘和情感分析

思来想去,虽然很忙,但还是挤时间针对这次肺炎疫情写个Python大数据分析系列博客,包括网络爬虫、可视化分析、GIS地图显示、情感分析、舆情分析、主题挖掘、威胁情报溯源、知识图谱、预测预警及AI和NLP应用等。希望该系列线上远程教学对您有所帮助,也希望早点战胜病毒,武汉…

爬取WHO各国病例数据

还在为拿不到官方病例数据而发愁吗&#xff1f; WHO各国病例数据如下&#xff1a; https://experience.arcgis.com/experience/685d0ace521648f8a5beeeee1b9125cd 我们的目的就是爬出这个图中的数据&#xff1a; 审查元素 首先我们随便点开一个国家的疫情情况&#xff1a;…

Python数据分析高薪实战第十天 EDA实战-全球新冠肺炎确诊病例趋势分析

27 初识 EDA&#xff1a;全球新冠肺炎确诊病例趋势分析 从本讲开始&#xff0c;我们会通过四个具体的案例来将我们之前学习的 Python 数据分析方面的知识全都串起来。一方面能够融会贯通&#xff0c;另一方面也能帮你掌握数据分析基本的方法论。 本讲我们首先会介绍数据分析中…

【大数据基础】2020年美国新冠肺炎疫情数据分析

https://dblab.xmu.edu.cn/blog/2738 https://dblab.xmu.edu.cn/blog/2636/ spark 安装 安装 Spark2.4.0 sudo tar -zxf ~/下载/spark-2.4.0-bin-without-hadoop.tgz -C /usr/local/ cd /usr/local sudo mv ./spark-2.4.0-bin-without-hadoop/ ./spark sudo chown -R hadoop:…

新冠疫情分析(疫情数据爬取+数据分析+网页排版展示)

新冠疫情来临&#xff0c;我简单的做一次疫情的数据分析温习我的python知识&#xff0c;也希望能帮到各位。分析中我用到的技术有&#xff1a;pyton爬取数据htmlcss将分析结果排版。用到的工具有exceltableau进行数据处理分析和绘图。数据分析中还是存在很多的不足&#xff0c;…

基于Python语言的Spark数据处理分析——2020年美国新冠肺炎疫情数据分析

基于Python语言的Spark数据处理分析——2020年美国新冠肺炎疫情数据分析 一、实验环境二、数据集1.数据集下载来源2.转换文件格式3.上传文件至HDFS文件系统 三、使用Spark进行数据分析1.读取文件并生成DataFrame2.采用python编程语言进行数据分析3.将HDFS上结果文件保存到本地文…

Python新型冠状病毒疫情数据自动爬取+统计+发送报告+数据屏幕(三)发送篇

今天介绍的项目是使用 Itchat 发送统计报告 项目功能设计&#xff1a; 定时爬取疫情数据存入Mysql进行数据分析制作疫情报告使用itchat给亲人朋友发送分析报告&#xff08;本文&#xff09;基于Django做数据屏幕使用Tableau做数据分析 来看看最终效果 目前已经完成&#xff…

python 爬取国内各省份新冠疫情历史数据(来自腾迅疫情)

数据接口&#xff1a; https://api.inews.qq.com/newsqa/v1/query/pubished/daily/list?adCode310000其中&#xff0c;adCode 是地区地理编码&#xff0c;可参考&#xff1a;python 全国行政地区信息爬取-腾迅位置服务平台请求方式&#xff1a; GET返回数据类型&#xff1a; J…