RabbitMQ 之 Work Queues 工作队列

目录

一、轮训分发消息

1、抽取工具类

2、启动两个工作线程

3、生产者代码

4、结果展示

二、消息应答

1、概念

2、自动应答

3、消息应答的方法

4、Multiple 的解释

 5、消息自动重新入队

6、消息手动应答代码

(1)生产者

(2)消费者

(3)结果展示

三、RabbitMQ 持久化

1、概念

2、队列如何实现持久化

 3、消息持久化

4、不公平分发

 5、预取值


工作队列 (又称任务队列) 的主要思想是避免立即执行资源密集型任务,而不得不等待它完成。

相反我们安排任务在之后执行。我们把任务封装为消息并将其发送到队列。在后台运行的工作进
程将弹出任务并最终执行作业。当有多个工作线程时,这些工作线程将一起处理这些任务。

生产者大量发消息,发给队列,此时造成很多消息停留在队列中,无法进行即使的处理,此时如果工作线程仅仅是一个线程,无法处理大量的消息。

所以这就希望有多个线程同时处理,从而达到将大量消息处理完成的目的,这里必须遵循一个原则:生产者发送的消息只能被处理一次,不能被多次处理,否则会造成工作内容的重复

一、轮训分发消息

为了保证一个消息只能被处理一次,所以采用轮训分发消息:轮流分发消息,这多个工作线程之间是竞争的关系,一旦一个处理了这个消息,其它线程就不能对其进行处理

1、抽取工具类

通过之前的代码,我们能发现,在生产者和消费者中关于创建连接工厂和信道的代码是重复的,所以我们可以将它们提取出来,抽取成一个专门的工具类

/*** 此类为连接工厂创建信道的工具类*/
public class RabbitMqUtils {public static Channel getChannel() throws IOException, TimeoutException {// 创建连接工厂ConnectionFactory factory = new ConnectionFactory();factory.setHost("111.229.153.16");factory.setUsername("admin");factory.setPassword("123");// 创建连接Connection connection = factory.newConnection();// 信道Channel channel = connection.createChannel();return channel;}
}

2、启动两个工作线程


3、生产者代码

// 生产者发送大量的消息
public class Task01 {// 队列名称public static final String QUEUE_NAME = "hello";// 发送大量的消息public static void main(String[] args) throws IOException, TimeoutException {Channel channel = RabbitMqUtils.getChannel();// 队列的声明/*1、队列名称2、队列里的消息是否持久化(磁盘)(默认存储在内存中)3、是否进行消费的共享4、是否自动删除 (最后一个消费者断开连接之后,是否自动删除)5、其它参数*/channel.queueDeclare(QUEUE_NAME,false,false,false,null);// 从控制台中接受信息Scanner scanner = new Scanner(System.in);while (scanner.hasNext()){String message = scanner.next();/*1、发送到哪个交换机2、路由的 key 值,本次是队列名称3、其它参数信息4、发送消息的消息体*/channel.basicPublish("",QUEUE_NAME,null,message.getBytes());System.out.println("发送消息完成: " + message);}}
}

4、结果展示


二、消息应答

1、概念

消费者完成一个任务可能需要一段时间,如果其中一个消费者处理一个长的任务并仅只完成了部分突然它挂掉了,会发生什么情况。

RabbitMQ 一旦向消费者传递了一条消息,便立即将该消息标记为删除。在这种情况下,突然有个消费者挂掉了,我们将丢失正在处理的消息。以及后续发送给该消费这的消息,因为它无法接收到。

为了保证消息在发送过程中不丢失,rabbitmq 引入消息应答机制,消息应答就是:消费者在接
收到消息并且处理该消息之后,告诉 rabbitmq 它已经处理了,rabbitmq 可以把该消息删除了。


2、自动应答

消息发送后立即被认为已经传送成功,这种模式需要在高吞吐量和数据传输安全性方面做权衡,因为这种模式如果消息在接收到之前,消费者那边出现连接或者 channel 关闭,那么消息就丢失了,当然另一方面这种模式消费者那边可以传递过载的消息,没有对传递的消息数量进行限制,当然这样有可能使得消费者这边由于接收太多还来不及处理的消息,导致这些消息的积压,最终使得内存耗尽,最终这些消费者线程被操作系统杀死,所以这种模式仅适用在消费者可以高效并以某种速率能够处理这些消息的情况下使用


3、消息应答的方法

A.Channel.basicAck(用于肯定确认),RabbitMQ 已知道该消息并且成功的处理消息,可以将其丢弃了

B.Channel.basicNack(用于否定确认)

C.Channel.basicReject(用于否定确认),与 Channel.basicNack 相比少一个参数,不处理该消息了直接拒绝,可以将其丢弃了


4、Multiple 的解释

手动应答的好处是可以批量应答并且减少网络拥堵

multiple 的 true 和 false 代表不同意思

true 代表批量应答 channel 上未应答的消息,比如说 channel 上有传送 tag 的消息 5,6,7,8 当前 tag 是 8 那么此时 5-8 的这些还未应答的消息都会被确认收到消息应答

false 同上面相比,只会应答 tag=8 的消息 5,6,7 这三个消息依然不会被确认收到消息应答 


 5、消息自动重新入队

如果消费者由于某些原因失去连接(其通道已关闭,连接已关闭或 TCP 连接丢失),导致消息未发送 ACK 确认,RabbitMQ 将了解到消息未完全处理,并将对其重新排队。

如果此时其他消费者可以处理,它将很快将其重新分发给另一个消费者。这样,即使某个消费者偶尔死亡,也可以确保不会丢失任何消息。


6、消息手动应答代码

默认消息采用的是自动应答,所以我们要想实现消息消费过程中不丢失,需要把自动应答改
为手动应答

(1)生产者

// 消息在手动应答时是不丢失的,放回队列中重新消费
public class Task2 {// 队列名称public static final String TASK_QUEUE_NAME = "ack_queue";public static void main(String[] args) throws IOException, TimeoutException {Channel channel = RabbitMqUtils.getChannel();// 声明队列channel.queueDeclare(TASK_QUEUE_NAME,false,false,false,null);// 从控制台输入信息Scanner scanner = new Scanner(System.in);while (scanner.hasNext()){String message = scanner.next();channel.basicPublish("",TASK_QUEUE_NAME,null,message.getBytes("UTF-8"));System.out.println("生产者发出消息: " + message);}}
}

(2)消费者

public class Worker03 {// 队列名称public static final String TASK_QUEUE_NAME = "ack_queue";// 接收消息public static void main(String[] args) throws IOException, TimeoutException {Channel channel = RabbitMqUtils.getChannel();System.out.println("C1 等待接收消息处理时间较短");DeliverCallback deliverCallback = ( consumerTag,  message) ->{SleepUtils.sleep(1);System.out.println("接收到的消息: " + new String(message.getBody(),"UTF-8"));/*手动应答的代码1、消息的标记2、是否批量应答*/channel.basicAck(message.getEnvelope().getDeliveryTag(),false );};CancelCallback cancelCallback = consumerTag ->{System.out.println(consumerTag + "消费者取消消费接口回调逻辑");};// 手动应答boolean autoAck = false;channel.basicConsume(TASK_QUEUE_NAME,autoAck,deliverCallback,cancelCallback);}
}

(3)结果展示

 


三、RabbitMQ 持久化

1、概念

刚刚我们已经看到了如何处理任务不丢失的情况,但是如何保障当 RabbitMQ 服务停掉以后消息生产者发送过来的消息不丢失。

默认情况下 RabbitMQ 退出或由于某种原因崩溃时,它忽视队列和消息,除非告知它不要这样做。确保消息不会丢失需要做两件事:我们需要将队列和消息都标记为持久化。


2、队列如何实现持久化

之前我们创建的队列都是非持久化的,rabbitmq 如果重启,该队列就会被删除掉,如果要队列实现持久化 需要在声明队列的时候把 durable 参数设置为持久化

但是需要注意的就是如果之前声明的队列不是持久化的,需要把原先队列先删除,或者重新创建一个持久化的队列,不然就会出现错误 

这个时候即使重启 rabbitmq 队列也依然存在


 3、消息持久化

要想让消息实现持久化需要在消息生产者修改代码,MessageProperties.PERSISTENT_TEXT_PLAIN 添加这个属性。 

将消息标记为持久化并不能完全保证不会丢失消息。尽管它告诉 RabbitMQ 将消息保存到磁盘,但是这里依然存在当消息刚准备存储在磁盘的时候但是还没有存储完,消息还在缓存的一个间隔点。

此时并没有真正写入磁盘。持久性保证并不强,但是对于我们的简单任务队列而言,这已经绰绰有余了。


4、不公平分发

在最开始的时候我们学习到 RabbitMQ 分发消息采用的轮训分发,但是在某种场景下这种策略并不是很好

比方说有两个消费者在处理任务,其中有个消费者 1 处理任务的速度非常快,而另外一个消费者 2处理速度却很慢,这个时候我们还是采用轮训分发的化就会到这处理速度快的这个消费者很大一部分时间处于空闲状态,而处理慢的那个消费者一直在干活

这种分配方式在这种情况下其实就不太好,但是 RabbitMQ 并不知道这种情况它依然很公平的进行分发。

为了避免这种情况,我们可以设置参数 channel.basicQos(1);


 5、预取值

本身消息的发送就是异步发送的,所以在任何时候,channel 上肯定不止只有一个消息另外来自消费者的手动确认本质上也是异步的。

因此这里就存在一个未确认的消息缓冲区,因此希望开发人员能限制此缓冲区的大小,以避免缓冲区里面无限制的未确认消息问题。这个时候就可以通过使用 basic.qos 方法设置“预取计数”值来完成的。

该值定义通道上允许的未确认消息的最大数量。一旦数量达到配置的数量,RabbitMQ 将停止在通道上传递更多消息,除非至少有一个未处理的消息被确认

例如,假设在通道上有未确认的消息 5、6、7,8,并且通道的预取计数设置为 4,此时 RabbitMQ 将不会在该通道上再传递任何消息,除非至少有一个未应答的消息被 ack。比方说 tag=6 这个消息刚刚被确认 ACK,RabbitMQ 将会感知这个情况到并再发送一条消息。消息应答和 QoS 预取值对用户吞吐量有重大影响。

通常,增加预取将提高向消费者传递消息的速度。虽然自动应答传输消息速率是最佳的,但是,在这种情况下已传递但尚未处理的消息的数量也会增加,从而增加了消费者的 RAM 消耗(随机存取存储器)应该小心使用具有无限预处理的自动确认模式或手动确认模式,消费者消费了大量的消息如果没有确认的话,会导致消费者连接节点的内存消耗变大,所以找到合适的预取值是一个反复试验的过程,不同的负载该值取值也不同 100 到 300 范围内的值通常可提供最佳的吞吐量,并且不会给消费者带来太大的风险。

预取值为 1 是最保守的。当然这将使吞吐量变得很低,特别是消费者连接延迟很严重的情况下,特别是在消费者连接等待时间较长的环境中。对于大多数应用来说,稍微高一点的值将是最佳的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/187767.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

@ConfigurationProperties使用

一直有个疑问,在使用ConfigurationProperties注解作用一个配置类时,如果该配置类继承了一个父类,那么父类的那些配置字段是否可以读取配置信息。 答案是可以的,前提是父类对应字段的set方法是public。 BaseProperties.java Getter Setter public class BasePropert…

什么是证书管理

在自带设备和物联网文化的推动下,数字化使连接到互联网的设备数量空前加速。在企业网络环境中,每个在线运行的设备都需要一个数字证书来证明其合法性和安全运行。这些数字证书(通常称为 X.509 证书)要么来自称为证书颁发机构 &…

Android---MVP 中 presenter 声明周期的管理

我们经常在 Android MVP 架构中的 Presenter 层做一些耗时操作,比如请求网络数据,然后根据请求后的结果刷新 View。但是,如果按返回结束 Activity,而 Presenter 依然在执行耗时操作。那么就有可能造成内存泄漏,严重时甚…

RustRover里使用AI通义灵码来写代码

AI通义灵码我选择RustRover里的 plugin进行下载使用 然后我们就提问好了&#xff1a;让他用c语言写一个冒泡排序程序 #include <stdio.h>void bubble_sort(int arr[], int size) {int i, j, temp;for (i 0; i < size - 1; i) {for (j 0; j < size - i - 1; j) {i…

Hololens开发笔记

1、关闭阴影 2、将相机渲染改为后向。因为默认是Forward&#xff0c;当在场景里面想使用点光源时&#xff0c;运行起来三角面会翻倍&#xff0c;影响软件运行流畅度。 3、第三人称同步相关。开启Host/Sever/Client前&#xff0c;需要将所有挂有NetworkObject/NetworkTransfor…

VINS-Mono-后端优化 (三:视觉雅可比推导)

用逆深度是因为这样可以在优化中从优化3个变量降低到1个&#xff0c;降低优化的维度加快求解速度 用逆深度是因为当距离很远的时候&#xff0c; 1 x \frac{1}{x} x1​ x x x 就会无穷大&#xff0c;而3D点很近的情况也一般不会有&#xff0c;这也是为了数值稳定性 用逆深度的…

Android 图层列表 、 LayerDrawable 、 layer-list \ 改变 seekbar thumb 滑块 的颜色

android 官网 &#xff1a; 图层列表 LayerDrawable / layer-list LayerDrawable 是管理其他可绘制对象数组的可绘制对象。列表中的每个可绘制对象均按照列表顺序绘制。列表中的最后一个可绘制对象绘于顶部。 每个可绘制对象均由单个 <layer-list> 元素内的 <item>…

树之二叉排序树(二叉搜索树)

什么是排序树 说一下普通二叉树可不是左小右大的 插入的新节点是以叶子形式进行插入的 二叉排序树的中序遍历结果是一个升序的序列 下面是两个典型的二叉排序树 二叉排序树的操作 构造树的过程即是对无序序列进行排序的过程。 存储结构 通常采用二叉链表作为存储结构 不能 …

内网如何使用Python第三方库包(举例JustinScorecardPy)

内网如何使用Python第三方库包 一、下载python whl文件(官网有的) 1、第一种方法 要直接下载whl文件&#xff0c;你可以按照以下步骤操作&#xff1a; 首先&#xff0c;访问 https://pypi.org/ 或 https://www.lfd.uci.edu/~gohlke/pythonlibs/ 网站。这两个都是Python的官方…

光刻掩膜版怎么制作的?

光掩膜版基本上是 IC 设计的“主模板”。掩模版有不同的尺寸。常见尺寸为 6 x 6 英寸一般的掩膜版由石英或玻璃基板组成。光掩膜版涂有不透明薄膜。更复杂的掩模版使用其他材料。 一般来说&#xff0c;术语“photo mask”用于描述与 1X 步进机或光刻系统一起使用的“主模板”。…

希尔排序原理

目录&#xff1a; 一、希尔排序与插入排序 1&#xff09;希尔排序的概念 2&#xff09;插入排序实现 二、希尔排序实现 一、希尔排序与插入排序 1&#xff09;希尔排序的概念 希尔排序(Shells Sort)是插入排序的一种又称“缩小增量排序”&#xff08;Diminishing Incremen…

ElasticSearch7.x - HTTP 操作 - 索引操作

创建索引 对比关系型数据库,创建索引就等同于创建数据库 在 Postman 中,向 ES 服务器发 PUT 请求 :http://192.168.254.101:9200/shopping 说明 {"acknowledged"【响应结果】: true, # true 操作成功"shards_acknowledged"【分片结果】: true, # 分片操…

紧急事件,停电导致安森美韩国厂全线停工 | 百能云芯

11月9日的消息报道&#xff0c;全球半导体公司安森美遭遇了一场意外的停电事故&#xff0c;发生在位于韩国的富川晶圆厂&#xff0c;导致整个工厂陷入停工状态&#xff01; 停电事件发生在11月5日&#xff0c;导致富川晶圆厂的产线暂时停工&#xff0c;停电持续了大约20分钟。由…

Mac电脑Visio文件编辑查看软件推荐Visio Viewer for Mac

mac版Visio Viewer功能特色 在Mac OS X上查看Visio绘图和图表 在Mac OS X上轻松查看MS Visio文件 在Mac上快速方便地打开并阅读Visio文件&#xff08;.vsd&#xff0c;.vsdx&#xff09;。 支持通过放大&#xff0c;缩小&#xff0c;旋转&#xff0c;文本选择和复制&#xff0…

DSP开发例程(4): logbuf_print_to_uart

目录 DSP开发例程: logbuf_print_to_uart新建工程源码编辑app.cfgos.cmain.c 调试说明 DSP开发例程: logbuf_print_to_uart SYS/BIOS 提供了 xdc.runtime.Log, xdc.runtime.LoggerBuf 和 xdc.runtime.LoggerSys 这几个模块用于日志记录. 日志信息在 应用程序调试和状态监控中非…

第二十九章 目标检测中的测试模型评价指标(车道线感知)

前言 近期参与到了手写AI的车道线检测的学习中去&#xff0c;以此系列笔记记录学习与思考的全过程。车道线检测系列会持续更新&#xff0c;力求完整精炼&#xff0c;引人启示。所需前期知识&#xff0c;可以结合手写AI进行系统的学习。 介绍 自动驾驶的一大前提是保证人的安全…

中国智能驾驶的“突围赛”打响,这家本土厂商为何能成为“先行者”?

中国本土厂商正在成为全球智能汽车产业链的“核心力量”。 根据《高工智能汽车研究院》数据显示&#xff0c;今年1-6月&#xff0c;自主品牌标配L2&#xff08;含L2&#xff09;级辅助驾驶交付新车155.34万辆。其中&#xff0c;搭载中国本土智能驾驶解决方案提供商&#xff08…

Nacos使用指南

Nacos使用指南 1.认识Nacos Nacos是SpringCloudAlibaba的一个组件&#xff0c;遵循SpringCloud规范 2.Nacos的优势 1.支持服务端主动检测服务提供者状态。临时实例采用心跳检测&#xff0c;非临时实例采用主动检测 2.Nacos支持服务列表变更消息推送&#xff0c;消息更加及…

C++入门篇3(类和对象【重点】)

文章目录 C入门篇3&#xff08;类和对象【重点】&#xff09;1、面向过程和面向对象2、类的引入3、类的定义4、类的访问限定符及封装4.1、访问限定符4.2、封装 5、类的作用域6、类的实例化&#xff08;对象&#xff09;7、类对象模型7.1、类对象的存储方式7.2、结构体&#xff…

mysql索引下推

文章目录 什么是索引下推索引下推优化的原理索引下推的具体实践没有使用ICP使用ICP 总结索引下推使用条件相关系统参数 什么是索引下推 索引下推(Index Condition Pushdown&#xff0c;简称ICP)&#xff0c;是MySQL5.6版本的新特性&#xff0c;它能减少回表查询次数&#xff0…