【源码复现】图神经网络之PPNP/APPNH

目录

  • 1、论文简介
  • 2、论文核心介绍
    • 2.1、现有方法局限
    • 2.2、PageRank&Personalized PageRank
    • 2.3、PPNP&APPNP
  • 3、源码复现
    • 3.1、模型总体框架
    • 3.2、PPNP
    • 3.3、APPNP
    • 3.4、MLP(两层)

1、论文简介

  • 论文题目——《PREDICT THEN PROPAGATE: GRAPH NEURAL NETWORKS MEET PERSONALIZED PAGERANK》
  • 论文作者——Johannes Klicpera, Aleksandar Bojchevski & Stephan Gu ̈nnemann
  • 论文地址——PREDICT THEN PROPAGATE: GRAPH NEURAL NETWORKS MEET PERSONALIZED PAGERANK
  • 源码——源码链接

2、论文核心介绍

2.1、现有方法局限

 现有的方法,仅仅使用了局部有限的邻域信息,更大的邻域信息并没有考虑到。例如,GCN,它采用平均的方法来聚合一阶邻域信息,通过堆叠多层来考虑到更高阶的邻域信息(论文中实际是两层);GAT则是采用注意力机制来学习不同邻域结点信息对当前结点的重要性,也就是说它是对周围邻域结点信息的加权平均。上述方法仍然是浅层的网络,并没有利用到深层邻域信息。
 现有方法的另外一个缺点就是过平滑现象(oversmoothing),这也是GCN不能堆叠多层的原因所在。另有作者,通过建立GCN和随机游走(random walk)的关系,发现当GCN的层数增加,GCN会收敛到随机游走的极限分布,会使不同类的结点之间变得不可分,导致GCN性能下降。
 为了解决上述的问题,作者提出了一个新的传播方案,这个方案的灵感来自于个性化PageRank算法,它平衡了局部邻域信息与更大的邻域信息的需要,允许更多的传播步骤而不会导致过平滑现象。此外,作者将神经网络从信息传播中分开来,允许去实现更大范围的传播而不用改变神经网络结构,由于这种特性,也可以将SOTA预测方法与文中的传播方案进行融合。

2.2、PageRank&Personalized PageRank

 PageRank算法通过网页链接重要性得分计算。重要性可认为是网页链接点击。PageRank算法给定一个概率值,定义为网页访问的概率。一般地, 1 N \frac{1}{N} N1 表示为每个网页节点初始化的概率, P R \rm{PR} PR也是一个初始化的概率值。PageRank 是一个迭代算法,因此 P R \rm{PR} PR 值初始化 1 N \frac{1}{N} N1 N N N表示为节点的数量。 P R \rm{PR} PR值的总和一般为1,当 P R {\rm{PR}} PR越大,说明重要性越大。
给定节点 v v v,求节点 v v v P R {\rm{PR}} PR值,
P R ( v ) = ∑ u ∈ N v P R ( u ) O ( u ) PR(v) = \sum_{u \in \mathcal{N}_v }\frac{PR(u)}{O(u)} PR(v)=uNvO(u)PR(u)
N v \mathcal{N}_v Nv表示所有链接到节点 v v v的集合。 O ( u ) O(u) O(u)表示节点 u u u的对外链接数。最早提出的PageRank算法存在着一些缺点,例如当一些节点存在自链接,或者是一些节点的出链节点形成循环圈时,PageRank在迭代过程中会出现 P R {\rm{PR}} PR持续增大,不会减小的情况。对于上述问题,PageRank算法被重新进行改进
P R ( v ) = α ∑ u ∈ N v P R ( u ) O ( u ) + ( 1 − α ) N \mathrm{PR(v)=}\alpha\sum_{\mathrm{u}\in\mathcal{N}_v}\frac{\mathrm{PR(u)}}{\mathrm{O(u)}}+\frac{(1-\alpha)}{\mathrm{N}} PR(v)=αuNvO(u)PR(u)+N(1α)
α \alpha α是一个超参数,取值一般为0.85。 α \alpha α表示节点跳转时的概率,不依据节点之间的链接进行跳转。
 PageRank算法衍生出的模型个性化的PageRank算法,主要利用图中节点的链接关系来迭代计算节点的权重。PageRank算法使用随机游走的策略来访问图中节点。PageRank算法与个性化Page Rank算法的区别在于随机游走时的跳转行为不同。个性化的PageRank算法对跳转行为进行约束,指定调转到的对外链接为特定的节点。例如在个性化排序时,用户只能跳转到一些特定的节点,这些节点表示用户偏好的那些节点。

PPR ′ ( v ) = α ∑ u ∈ N v P R ( u ) O ( u ) + ( 1 − α ) r v \text{PPR}^{'}(\mathrm{v})=\alpha\sum_{\mathrm{u}\in\mathcal{N}_v}\frac{\mathrm{PR(u)}}{\mathrm{O(u)}}+(1-\alpha)\mathrm{r}_\mathrm{v} PPR(v)=αuNvO(u)PR(u)+(1α)rv
r v = { 1 v = u 0 v ≠ u \mathrm r_\mathrm{v}=\begin{cases}1&\mathrm{~v=u}\\0&\mathrm{~v\neq u}\end{cases} rv={10 v=u v=u
个性化PageRank算法中,用户的偏好表示为 r ∣ v ∣ = 1 \mathrm r|\mathrm{v}| = 1 rv=1,原始的PageRank采用的计算方式为 Π p r = A r w Π p r \Pi_{pr} = A_{rw}\Pi_{pr} Πpr=ArwΠpr, Π p r 是 A r w \Pi_{pr}是A_{rw} ΠprArw的特征向量, A r w = A D − 1 A_{rw}=AD^{-1} Arw=AD1。类似的,个性化的PageRank 算法可以表示为

Π p p r ( i x ) = ( 1 − α ) A ~ Π p p r ( i x ) + α i x \Pi_{\mathrm{ppr}}(\mathbf{i_x})=(1-\alpha)\tilde{{A}}\Pi_{\mathrm{ppr}}(\mathbf{i_x})+\alpha\mathbf{i_x} Πppr(ix)=(1α)A~Πppr(ix)+αix
参考连接

2.3、PPNP&APPNP

 上一节,我们知道了Personalized PageRank算法及其他的表达式,对上式进行求解,求得 Π p p r \Pi_{\mathrm{ppr}} Πppr
Π p p r ( i x ) = α ( I n − ( 1 − α ) A ~ ) − 1 i x \Pi_{\mathrm{ppr}}(\mathbf{i_{x}})=\alpha(\mathbf{I_n}-(1-\alpha)\tilde{\mathbf{A}})^{-1}\mathbf{i_{x}} Πppr(ix)=α(In(1α)A~)1ix
其中, A ~ = D ~ − 1 2 A ^ D ~ − 1 2 , A ^ = A + I , i x 是传送向量 \tilde{A}=\tilde{D}^{-\frac{1}{2}}\hat{A}\tilde{D}^{-\frac{1}{2}},\hat{A} = A+I,\mathrm{i_x}是传送向量 A~=D~21A^D~21A^=A+Iix是传送向量。最终的PPNP算法公式表达如下:
Z p p n p = s o f t m a x ( α ( I n − ( 1 − α ) A ~ ) − 1 H ) Z_{\mathrm{ppnp}} = \mathrm{softmax}(\alpha(\mathbf{I_n}-(1-\alpha)\tilde{\mathbf{A}})^{-1}\mathbf{H}) Zppnp=softmax(α(In(1α)A~)1H)
H i , : = f θ ( X i , : ) \mathbf{H}_{i,:} = f_{\theta}(\mathbf{X}_{i,:}) Hi,:=fθ(Xi,:)
其中 X \mathbf{X} X是特征向量矩阵, f θ f_{\theta} fθ是具有参数集合 θ \theta θ的神经网络, H ∈ R n × c \mathbf{H} \in R^{n \times c} HRn×c
 由于在计算上式的时候,需要求矩阵的逆运算,这是一个耗时的操作,为了加速PPNP的训练速度,作者采用一种近似操作来求解,称为APPNP。
Z ( 0 ) = H = f θ ( X ) , Z ( k + 1 ) = ( 1 − α ) A ~ Z ( k ) + α H , Z ( K ) = s o f t m a x ( ( 1 − α ) A ~ Z ( K − 1 ) + α H ) Z^{(0)}=H=f_\theta(\mathbf{X}),\\ Z^{(k+1)} =(1-\alpha)\tilde{A}Z^{(k)}+\alpha H,\\ Z^{(K)}=\mathrm{softmax}((1-\alpha)\tilde{A}Z^{(K-1)}+\alpha H) Z(0)=H=fθ(X),Z(k+1)=(1α)A~Z(k)+αH,Z(K)=softmax((1α)A~Z(K1)+αH)
其中, K K K是迭代次数。作者也在后面的附录中也证明了APPNP当 K ⟶ ∞ K \longrightarrow \infty K时,收敛到PPNP,所以APPNP可以看作PPNP的迭代解。
模型的框架如下图所示:
在这里插入图片描述

3、源码复现

模型复现源码链接链接:点我点我 提取码:6666

3.1、模型总体框架

import torch
from torch.nn import Module
import torch.nn as nn
from torch.nn import functional as F
import numpy as npclass PPNP(nn.Module):def __init__(self,model,propagation):super(PPNP,self).__init__()self.model = modelself.propagation = propagationdef forward(self,feature,adj):#Generate Prediction#用于生成预测if self.model.__class__.__name__ =='MLP':output = self.model(feature)else:output = self.model(feature,adj)#通过个性化PageRank传播if self.propagation is not None:output = self.propagation(output)#返回最后一层的结果return F.log_softmax(output,dim=1)

3.2、PPNP

class PPNPExtract(Module):def __init__(self,alpha,adj,dropout):super(PPNPExtract,self).__init__()self.alpha = alphaself.adj = adjself.dropout = dropoutpassdef forward(self,H):inv = self.PPR()inv = F.dropout(inv,self.dropout,training=self.training)return self.alpha * torch.mm(inv,H) def PPR(self):if isinstance(self.adj,torch.Tensor):ADJ = self.adj.to_dense().numpy()I_n = np.eye(self.adj.shape[0])M = I_n-(1-self.alpha)*ADJinv_M = np.linalg.inv(M)return torch.Tensor(inv_M)

3.3、APPNP

class PowerIteration(Module):def __init__(self,adj,alpha,k,dropout):super(PowerIteration,self).__init__()self.adj = adjself.alpha = alphaself.k = kself.dropout = dropoutdef forward(self,H):Z = Hfor _ in range(self.k):Z = F.dropout(Z,self.dropout,training=self.training)Z = (1-self.alpha)*torch.mm(self.adj,Z) + self.alpha * Hreturn Z

3.4、MLP(两层)

class MLP(Module):def __init__(self,input_dim,hid_dim,output_dim,dropout):super(MLP,self).__init__()self.input_dim = input_dimself.hid_dim = hid_dimself.output_dim = output_dimself.dropout = dropoutself.layer1 = nn.Linear(input_dim,hid_dim,bias=False)self.layer2 = nn.Linear(hid_dim,output_dim,bias=False)def forward(self,X):X = F.dropout(X,self.dropout,training=self.training)X = self.layer1(X)X = F.relu(X)X = F.dropout(X,self.dropout,training=self.training)X = self.layer2(X)return Xdef __repr__(self) -> str:return self.__class__.__name__

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/190205.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Task定时任务框架

二十四、Spring Task 24.1 介绍 Spring Task 是Spring框架提供的任务调度工具,可以按照约定的时间自动执行某个代码逻辑。 定位:定时任务框架 作用:定时自动执行某段Java代码 为什么要在Java程序中使用Spring Task? 应用场景…

ACM练习——第一天

因为最近要去农大参加他们的算法邀请赛,然后赛制是ACM赛制的,所以我就直接很迷茫。 然后我就找到了牛客的ACM练习题,好好的练习一下ACM写法,而且我还要被迫写C,哭了。 开始钻研 1.从Java过度到C 题目源于牛客网&…

[工业自动化-14]:西门子S7-15xxx编程 - 软件编程 - STEP7 TIA博途是全集成自动化软件TIA portal快速入门

目录 一、TIA博途是全集成自动化软件TIA portal快速入门 1.1 简介 1.2 软件常用界面 1.3 软件安装的电脑硬件要求 1.4 入口 1.5 主界面 二、PLC软件编程包含哪些内容 2.1 概述 2.2 电机运动控制 一、TIA博途是全集成自动化软件TIA portal快速入门 1.1 简介 Siemens …

Java中的7大设计原则

在面向对象的设计过程中,首先需要考虑的是如何同时提高一个软件系统的可维护性和可复用性。这时,遵从面向对象的设计原则,可以在进行设计方案时减少错误设计的产生,从不同的角度提升一个软件结构的设计水平。 1、单一职责 一个类…

用于强化学习的置换不变神经网络

一、介绍 如果强化学习代理提供的输入在训练中未明确定义,则通常表现不佳。一种新方法使 RL 代理能够正常运行,即使受到损坏、不完整或混乱的输入的影响也是如此。 “大脑能够使用来自皮肤的信息,就好像它来自眼睛一样。我们不是用眼睛看&…

重磅发布 OpenAI 推出用户自定义版 ChatGPT

文章目录 重磅发布 OpenAI 推出用户自定义版 ChatGPT个人简介 重磅发布 OpenAI 推出用户自定义版 ChatGPT OpenAI 首届开发者大会 (OpenAI DevDay) 于北京时间 11 月 7 日凌晨 02:00 开始,大会上宣布了一系列平台更新。其中一个重要更新是用户可以创建他们自己的自定…

Spring Cloud学习(七)【Docker 容器】

文章目录 初识 DockerDocker 介绍Docker与虚拟机Docker架构安装 Docker Docker 基本操作镜像相关命令容器相关命令数据卷 Dockerfile 自定义镜像镜像结构Dockerfile DockerComposeDockerCompose介绍安装DockerCompose Docker镜像仓库常见镜像仓库服务私有镜像仓库 初识 Docker …

里氏代换原则

package com.jmj.principles.dmeo2.after;/*** 四边形接口*/ public interface Quadrilateral {double getLength();double getWidth();}package com.jmj.principles.dmeo2.after;/*** 长方形类*/ public class Rectangle implements Quadrilateral{private double length;priv…

WPF ToggleButton 主题切换动画按钮

WPF ToggleButton 主题切换动画按钮 仿造最近看到的html中的一个效果&#xff0c;大致思路是文章这样&#xff0c;感觉还可以再雕琢一下。 代码如下 XAML: <UserControl x:Class"WPFSwitch.AnimationSwitch"xmlns"http://schemas.microsoft.com/winfx/200…

取暖器/暖风机上架 亚马逊美国站UL1278测试标准要求

美国是一个对安全要求非常严格的国家&#xff0c;美国本土的所有电子产品生产企业早在很多年前就要求有相关检测。而随着亚马逊在全球商业的战略地位不断提高&#xff0c;境外的电子设备通过亚马逊不断涌入美国市场。“为保证消费者得安全&#xff0c;亚马逊始终强调带电得产品…

用python将csv表格数据做成热力图

python的开发者为处理表格和画图提供了库的支持&#xff0c;使用pandas库可以轻松完成对csv文件的读写操作&#xff0c;使用matplotlib库提供了画热力图的各种方法。实现这个功能首先需要读出csv数&#xff0c;然后设置自定义色条的各种属性如颜色&#xff0c;位置&#xff0c;…

Java进阶(垃圾回收GC)——理论篇:JVM内存模型 垃圾回收定位清除算法 JVM中的垃圾回收器

前言 JVM作为Java进阶的知识&#xff0c;是需要Java程序员不断深度和理解的。 本篇博客介绍JVM的内存模型&#xff0c;对比了1.7和1.8的内存模型的变化&#xff1b;介绍了垃圾回收的语言发展&#xff1b;阐述了定位垃圾的方法&#xff0c;引用计数法和可达性分析发以及垃圾清…

2012年7月11日 Go生态洞察:Gccgo在GCC 4.7.1中的集成

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

2023亚太杯数学建模A题B题C题思路代码分析

文章目录 0 赛题思路1 竞赛信息2 竞赛时间3 建模常见问题类型3.1 分类问题3.2 优化问题3.3 预测问题3.4 评价问题 4 建模资料5 最后 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 竞赛信息 2023年第十三…

github私有仓库开发,公开仓库发布版本

文章目录 github私有仓库开发,公开仓库发布版本需求背景实现思路GitHub Releases具体步骤广告 github私有仓库开发,公开仓库发布版本 需求背景 github私有仓库开发,公开仓库发布版本&#xff0c;既可以保护源代码,又可以发布版本给用户使用。许多知名软件项目都采用了这样的开…

仓库管理系统(WMS)升级解决方案—条码引入

在企业的整个供应链中&#xff0c;仓储起着至关重要的作用&#xff0c;如果不能保证正确的进货和库存控制及发货&#xff0c;将会导致管理费用的增加&#xff0c;服务质量难以得到保证&#xff0c;从而影响企业的竞争力。 传统简单、静态的仓库管理通常以结果为导向&#xff0…

高效批量剪辑、处理和添加水印,用视频批量剪辑高手轻松搞定!

您是否曾经在处理大量视频时&#xff0c;因为剪辑、处理和添加水印等问题而感到烦恼&#xff1f;是否因为这些问题而大大降低了您的工作效率&#xff1f;现在&#xff0c;我们为您推荐一款全新的视频批量剪辑工具——视频批量剪辑高手&#xff0c;让您的工作效率瞬间翻倍&#…

新型的铁塔基站“能源管家”

安科瑞 崔丽洁 引言&#xff1a;随着5G基站的迅猛发展&#xff0c;基站的能耗问题也越来越突出&#xff0c;高效可靠的基站配电系统方案&#xff0c;是提高基站能耗使用效率&#xff0c;实现基站节能降耗的重要保证&#xff0c;通过多回路仪表监测每个配电回路的用电负载情况&a…

MySQL索引优化

EXPLAIN详解 优先了解EXPLAIN&#xff0c;文章链接在下面。 EXPLAIN详解&#xff08;MySQL&#xff09; 索引数据结构 MySQL主要有两种结构&#xff1a;hash索引和BTree索引&#xff0c;InnoDB引擎默认是BTree索引。 索引分类 聚簇索引&#xff1a; 指索引的键值的逻辑顺…