[量子计算与量子信息] 2.1 线性代数

2.1 线性代数

符号对照表

image-20231108101831542

量子力学中,向量使用 ∣ ψ ⟩ \ket \psi ψ (ket)来表示,可以理解为一个列向量。其对偶向量为 ⟨ ψ ∣ \bra \psi ψ ,可以理解为行向量。

向量空间中零向量直接用 0 0 0 表示, ∣ 0 ⟩ \ket{0} 0 已有了其他含义。

2.1.1 基与线性无关

向量空间中的一个生成集是一组向量 ∣ v 1 ⟩ , ∣ v 2 ⟩ , . . . , ∣ v n ⟩ \ket{v_1},\ket{v_2},...,\ket{v_n} v1,v2,...,vn,空间中的任意向量 ∣ v ⟩ \ket{v} v 均能使用该组向量的线性组合来表示,即 ∣ v ⟩ = ∑ i a i ∣ v i ⟩ \ket{v} = \sum_i a_i \ket{v_i} v=iaivi

线性相关

一组非零向量 ∣ v 1 ⟩ , ∣ v 2 ⟩ , . . . , ∣ v n ⟩ \ket{v_1},\ket{v_2},...,\ket{v_n} v1,v2,...,vn,如果存在一组复数 a 1 , a 2 , . . . , a n a_1, a_2,...,a_n a1,a2,...,an,其中至少对一个 i i i ,有 a i ≠ 0 a_i \ne 0 ai=0
a 1 ∣ v 1 ⟩ + a 2 ∣ v 2 ⟩ + . . . + a n ∣ v n ⟩ = 0 a_1 \ket{v_1} + a_2 \ket{v_2} + ... + a_n \ket{v_n} = 0 a1v1+a2v2+...+anvn=0
成立。反之,则是线性无关的。

对于任意两个线性无关的向量组如果都是向量空间 V V V 的生成集,则必然包含相同数目的元素。

2.1.2 线性算子与矩阵

定义

任意对输入是线性的函数 A : V → W A:V\rightarrow W A:VW,满足:
A ( ∑ i a i ∣ ψ ⟩ ) = ∑ i a i A ∣ ψ ⟩ A(\sum_i a_i \ket{\psi}) = \sum_i a_i A \ket \psi A(iaiψ)=iaiAψ
线性算子与矩阵是等价的。

A : V → W A: V \rightarrow W A:VW 是向量空间 V V V W W W 之间的一个线性算子,设 ∣ v 1 ⟩ , ∣ v 2 ⟩ , . . . ∣ v m ⟩ \ket{v_1},\ket{v_2},...\ket{v_m} v1,v2,...vm V V V 的一个基而 ∣ w 1 ⟩ , ∣ w 2 ⟩ , . . . , ∣ w n ⟩ \ket{w_1},\ket{w_2},...,\ket{w_n} w1,w2,...,wn W W W 的一个基。于是存在
A ∣ v j ⟩ = ∑ i A i j ∣ w i ⟩ A \ket{v_j} = \sum_i A_{ij} \ket{w_i} Avj=iAijwi

2.1.3 Pauli 阵

image-20231108113834198

2.1.4 内积

内积定义

存在从 V × V V \times V V×V C C C 的函数 ( ∙ , ∙ ) (\bullet,\bullet) (,),满足:

  1. ( ∙ , ∙ ) (\bullet,\bullet) (,) 对第二个自变量是线性的,即

( ∣ v ⟩ , ∑ i λ i ∣ w i ⟩ ) = ∑ i λ i ( ∣ v ⟩ , ∣ w i ⟩ ) (\ket{v}, \sum_i \lambda_i \ket{w_i}) = \sum_i \lambda_i(\ket v,\ket{w_i}) (v,iλiwi)=iλi(v,wi)

  1. ( ∣ v ⟩ , ∣ w ⟩ ) = ( ∣ w ⟩ , ∣ v ⟩ ) ∗ (\ket v, \ket w) = (\ket w, \ket v)^* (v,w)=(w,v),即 ⟨ v ∣ w ⟩ = ( ⟨ w ∣ v ⟩ ) ∗ \braket{v|w} = (\braket{w|v})^* vw=(wv)

  2. ( ∣ v ⟩ , ∣ v ⟩ ) ≥ 0 (\ket v, \ket v) \ge 0 (v,v)0, 当且仅当 ∣ v ⟩ = 0 \ket v = 0 v=0 时取等号

例如, C n C^n Cn 具有如下定义的一个内积:
( ( y 1 , y 2 , . . . y n ) , ( z 1 , z 2 , . . . , z n ) ) = ∑ i y i ∗ z i = [ y 1 ∗ , y 2 ∗ , . . . , y n ∗ ] [ z 1 z 2 ⋮ z n ] ((y_1,y_2,...y_n),(z_1,z_2,...,z_n)) = \sum_i y_i^*z_i = [y_1^*,y_2^*,...,y_n^*] \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} ((y1,y2,...yn),(z1,z2,...,zn))=iyizi=[y1,y2,...,yn] z1z2zn

带内积的向量空间称为内积空间,即 Hilbert 空间。

正交

如果向量 ∣ v ⟩ \ket v v ∣ w ⟩ \ket w w 的内积为0,则称它们正交。

范数
∥ ∣ v ⟩ ∥ = ⟨ v ∣ v ⟩ \Vert \ket v \Vert = \sqrt{\braket{v|v}} v=vv
如果 ∥ ∣ v ⟩ ∥ = 1 \Vert \ket{v} \Vert = 1 v=1,则称其为单位向量,或归一化的。

对任意非零向量 ∣ v ⟩ \ket v v,向量除以其范数,称为向量的归一化。

从现在起,提到线性算子的矩阵表示时,我们总是指相对标准正交的输入输出基的矩阵表示,同时约定当线性算子的输入输出空间相同时,除非特别说明,输入输出基也取相同

对偶向量可以当作一个行向量,其分量对于 ∣ v ⟩ \ket v v 列向量表示的分量的复共轭,即 ⟨ v ∣ = [ v 1 ∗ , v 2 ∗ , . . . , v n ∗ ] \bra v = [v_1^*,v_2^*,...,v_n^*] v=[v1,v2,...,vn].

外积

∣ v ⟩ \ket v v 是内积空间 V V V 中的向量,而 ∣ w ⟩ \ket w w 是内积空间 W W W 中的向量,定义 ∣ w ⟩ ⟨ v ∣ \ket w \bra v wv 为从 V V V W W W 的线性算子:
( ∣ w ⟩ ⟨ v ∣ ) ( ∣ v ′ ⟩ ) = ∣ w ⟩ ⟨ v ∣ v ′ ⟩ = ⟨ v ∣ v ′ ⟩ ∣ w ⟩ (\ket w \bra v)(\ket {v^{'}}) = \ket w \braket {v|v^{'}} = \braket {v|v^{'}} \ket w (wv)(v)=wvv=vvw

完备性关系

i i i 为向量空间 V V V 的任意标准正交基,任意向量 ∣ v ⟩ \ket v v 可写成 ∣ v ⟩ = ∑ i v i ∣ i ⟩ \ket v = \sum_i v_i \ket i v=ivii v i v_i vi 是一组复数。注意到 ⟨ i ∣ v ⟩ = v i \braket {i|v} = v_i iv=vi,于是
( ∑ i ∣ i ⟩ ⟨ i ∣ ) ∣ v ⟩ = ∑ i ∣ i ⟩ ⟨ i ∣ v ⟩ = ∑ i v i ∣ i ⟩ = ∣ v ⟩ (\sum_i \ket i \bra i) \ket v = \sum_i \ket i \braket {i | v} = \sum_i v_i \ket i = \ket v (iii)v=iiiv=ivii=v
故有:
∑ i ∣ i ⟩ ⟨ i ∣ = I \sum_i \ket i \bra i = I iii=I
完备性关系的一个应用是把任意线性算子表示成外积形式。设 A : V → W A: V \rightarrow W A:VW 是一个线性算子, ∣ v i ⟩ \ket{v_i} vi V V V 的一个标准正交基,且 w j w_j wj W W W 的一个标准正交基,两次应用完备性关系得到:
A = I w A I v A = I_w A I_v A=IwAIv

= ∑ i j ∣ w j ⟩ ⟨ w j ∣ A ∣ v i ⟩ ⟨ v i ∣ = \sum_{ij}\ket{w_j} \bra{w_j} A \ket{v_i} \bra{v_i} =ijwjwjAvivi

= ∑ i j ⟨ w j ∣ A ∣ v i ⟩ ∣ w j ⟩ ⟨ v i ∣ = \sum_{ij} \bra{w_j} A \ket{v_i} \ket{w_j}\bra{v_i} =ijwjAviwjvi

这就是 A A A 的外积表示,从此式也可以看出相对输入基 ∣ v i ⟩ \ket{v_i} vi 和 输出基 ∣ w ⟩ j \ket w_j wj A A A 的第 i i i 列第 j j j 行元素是 ⟨ w j ∣ A ∣ v i ⟩ \bra{w_j}A\ket{v_i} wjAvi.

2.1.5 特征向量和特征值

线性算子 A A A 在向量空间上的特征向量(本征向量,eigenvector)指非零的向量 ∣ v ⟩ \ket v v,使得 A ∣ v ⟩ = v ∣ v ⟩ A \ket v = v \ket v Av=vv,其中 v v v 是一个复数,称为 A A A 对应于 ∣ v ⟩ \ket v v特征值(本征值,eigenvalue)。通常为方便起见,采用同一个记号 v v v 表示特征向量的标号和特征值。

向量空间 V V V 上算子 A A A 的对角表示是具有形式 A = ∑ i λ i ∣ i ⟩ ⟨ i ∣ A = \sum_i \lambda_i \ket i \bra i A=iλiii 的一个表示,其中向量组 ∣ i ⟩ \ket i i A A A 的特征向量构成的标准正交向量组,对应的特征值为 λ i \lambda_i λi

如果一个算子有对角表示,它被称为可对角化。原矩阵与对角化后的矩阵是相似的。

当本征空间大于一维时,称为简并,即同一特征值对应多个线性无关的特征向量。

相似矩阵就是同一个线性变换在不同基下的矩阵表示

2.1.6 伴随与 Hermite 算子

伴随

A A A 是 Hilbert 空间 V V V 上的线性算子,实际上 V V V 上存在唯一的线性算子 A † A^{\dagger} A,使得对所有向量 ∣ v ⟩ ∣ w ⟩ ∈ V \ket v \ket w \in V vwV 成立:
( ∣ v ⟩ , A ∣ w ⟩ ) = ( A † ∣ v ⟩ , ∣ w ⟩ ) (\ket v, A \ket w) = (A^{\dagger}\ket v,\ket w) (v,Aw)=(Av,w)
⟨ v ∣ A † w ⟩ = ⟨ A v ∣ w ⟩ = ⟨ w ∣ A v ⟩ ∗ \braket{v|A^{\dagger}w} = \braket{Av|w} = \braket{w|Av}^* vAw=Avw=wAv

这个线性算子称为 A A A 的伴随(adjoint)或 Hermite 共轭。如果 ∣ v ⟩ \ket v v 是向量,则定义 ∣ v ⟩ † = ⟨ v ∣ \ket v ^{\dagger} = \bra v v=v.

性质:

  • ( A B ) † = B † A † (AB)^{\dagger} = B^{\dagger}A^{\dagger} (AB)=BA (从定义出发证明)
  • ( ∣ w ⟩ ⟨ v ∣ ) † = ∣ v ⟩ ⟨ w ∣ (\ket w \bra v)^{\dagger} = \ket v \bra w (wv)=vw (用矩阵表示出来,Hermite 共轭运算的作用将矩阵变为共轭转置矩阵,即 A † = ( A ∗ ) T A^{\dagger} = (A^*)^T A=(A)T
  • ( A ∣ v ⟩ ) † = ⟨ v ∣ † A † (A \ket v)^{\dagger} = \bra v^{\dagger} A^{\dagger} (Av)=vA
  • ( ∑ i a i A i ) † = ∑ i a i ∗ A i † (\sum_i a_iA_i)^{\dagger} = \sum_i a_i^* A_i^{\dagger} (iaiAi)=iaiAi (伴随的反线性)
  • ( A † ) † = A (A^{\dagger})^{\dagger} = A (A)=A

厄密(自伴)算符:

如果 A † = A A^{\dagger} =A A=A,即 ⟨ α ∣ A β ⟩ = ⟨ A α ∣ β ⟩ = ⟨ β ∣ A α ⟩ ∗ \braket{\alpha|A\beta} = \braket{A\alpha|\beta} = \braket{\beta|A\alpha}^* αAβ=Aαβ=βAα,则称 A A A 为 Hermite 或自伴算子。

从而 ⟨ α ∣ A α ⟩ = ⟨ A α ∣ α ⟩ = ⟨ α ∣ A α ⟩ ∗ \braket{\alpha|A\alpha} = \braket{A\alpha|\alpha} = \braket{\alpha|A\alpha}^* αAα=Aαα=αAα,因此 ⟨ α ∣ A α ⟩ \braket{\alpha|A\alpha} αAα 是实数。

也因此厄密算符 A A A对角元 A i i = ⟨ r i ∣ A r i ⟩ A_{ii} = \braket{r_i|Ar_i} Aii=riAri 为实数

⟨ r i ∣ A r j ⟩ = ⟨ A r i ∣ r j ⟩ = ⟨ r j ∣ A r i ⟩ ∗ \braket{r_i|Ar_j} = \braket{Ar_i|r_j}=\braket{r_j|Ar_i}^* riArj=Arirj=rjAri,因此 A i j = A j i ∗ A_{ij} = A_{ji}^* Aij=Aji

投影算子

W W W d d d 维向量空间 V V V k k k 维算子,采用 Gram-Schimdt 过程,可以为 V V V 构造一个标准正交基 ∣ 1 ⟩ , . . . , ∣ d ⟩ \ket 1,...,\ket d 1,...,d, 使得 ∣ 1 ⟩ , . . . ∣ k ⟩ \ket 1,...\ket k 1,...k W W W 的一个标准正交基,定义
P = ∑ i k ∣ i ⟩ ⟨ i ∣ P = \sum_i^{k} \ket i \bra i P=ikii
W W W 上的投影算子。

对任意向量 ∣ v ⟩ \ket v v, ∣ v ⟩ ⟨ v ∣ \ket v \bra v vv 都是厄密的,因此 P P P 也是厄密的,即 P † = P P^{\dagger} = P P=P.

由完备性关系得, ∑ i ∣ i ⟩ ⟨ i ∣ = I \sum_i \ket i \bra i = I iii=I,因此 Q = I − P Q = I - P Q=IP P P P 的正交补.

对任意投影 P P P 满足 P 2 = P P^2 = P P2=P.

证明:

P = ∑ i ∣ i ⟩ ⟨ i ∣ P = \sum_i \ket i \bra i P=iii,则 P 2 = ∑ i j ∣ i ⟩ ⟨ i ∣ j ⟩ ⟨ j ∣ = ∑ i j δ i j ⟨ i ∣ j ⟩ = ∑ i ∣ i ⟩ ⟨ i ∣ = P P^2 = \sum_{ij}\ket i \braket {i | j} \bra j = \sum_{ij} \delta_{ij}\braket{i|j} = \sum_i \ket i \bra i = P P2=ijiijj=ijδijij=iii=P.

正规算子

算子 A A A 称为正规的,如果 A A † = A † A AA^{\dagger} = A^{\dagger}A AA=AA 成立。

性质:

  1. 正规矩阵是厄密的,当且仅当它的特征值为实数。

谱分解定理

一个算子是正规算子当且仅当它可对角化。

任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵。

酉矩阵

满足 U U † = U † U = I UU^{\dagger} = U^{\dagger}U = I UU=UU=I

  • U − 1 = U † U^{-1} = U^{\dagger} U1=U,且 U † U^{\dagger} U 也是幺正算符

  • U U U 是正规的且有谱分解。

  • 幺正算符的乘积也是幺正:

    ( U V ) ( U V ) † = U V V † U † = I (UV)(UV)^{\dagger} = UVV^{\dagger}U^{\dagger} = I (UV)(UV)=UVVU=I

  • 幺正算符保持两个算符内积不变:

    ⟨ U α ∣ U β ⟩ = ⟨ α ∣ U † U β ⟩ = ⟨ α ∣ β ⟩ \braket{U\alpha|U\beta} = \braket{\alpha|U^{\dagger}U\beta} = \braket{\alpha | \beta} Uβ=αUUβ=αβ

  • 幺正算符是正交矩阵(比如空间中的转动)的推广。相互正交的向量作相同转动后仍然正交。

  • ∣ ψ ( t ) ⟩ = U ( t ) ∣ ψ ( 0 ) ⟩ \ket{\psi(t)} = U(t)\ket{\psi(0)} ψ(t)=U(t)ψ(0) 中的演化算符 U ( t ) U(t) U(t) 是幺正的。

谱分解定理证明

2.1.7 张量积

张量积是将向量空间合在一起,构成更大向量空间的一种方法。

V V V W W W 是维数分别是 m m m n n n 的向量空间,并假定 V V V W W W 是 Hilbert 空间,于是 V ⊗ W V \otimes W VW 是一个 m n mn mn 维向量空间。 V ⊗ W V \otimes W VW 的元素是 V V V 的元素 ∣ v ⟩ \ket v v W W W 的元素 ∣ w ⟩ \ket w w 的张量积 ∣ v ⟩ ⊗ ∣ w ⟩ \ket v \otimes \ket w vw 的线性组合。如果 ∣ i ⟩ \ket i i ∣ j ⟩ \ket j j V V V W W W 的标准正交基,则 ∣ i ⟩ ⊗ ∣ j ⟩ \ket i \otimes \ket j ij V ⊗ W V\otimes W VW 的一个基。

性质:

  1. 对任意标量 z z z V V V 的元素 v v v W W W 的元素 w w w,满足 z ( ∣ v ⟩ ⊗ ∣ w ⟩ ) = ( z ∣ v ⟩ ) ⊗ ∣ w ⟩ = ∣ v ⟩ ⊗ ( z ∣ w ⟩ ) z(\ket v \otimes \ket w) = (z\ket v) \otimes \ket w = \ket v \otimes (z\ket w) z(vw)=(zv)w=v(zw).
  2. V V V 中任意的 v 1 v_1 v1 v 2 v_2 v2 W W W 中的 ∣ w ⟩ \ket w w,满足 ( ∣ v 1 ⟩ + ∣ v 2 ⟩ ) ⊗ ∣ w ⟩ = ∣ v 1 ⟩ ⊗ ∣ w ⟩ + ∣ v 2 ⟩ ⊗ ∣ w ⟩ (\ket {v_1} + \ket {v_2}) \otimes \ket w = \ket {v_1} \otimes \ket w + \ket {v_2} \otimes \ket w (v1+v2)w=v1w+v2w.
  3. V V V 中任意的 ∣ v ⟩ \ket v v W W W 中的 w 1 w_1 w1 w 2 w_2 w2,满足 ∣ v ⟩ ⊗ ( ∣ w 1 ⟩ + ∣ w 2 ⟩ ) = ∣ v ⟩ ⊗ ∣ w 1 ⟩ + ∣ v ⟩ ⊗ ∣ w 2 ⟩ \ket v \otimes (\ket {w_1} + \ket {w_2}) = \ket v \otimes \ket {w_1} + \ket v \otimes \ket {w_2} v(w1+w2)=vw1+vw2.

矩阵表示

image-20231112162146651

2.1.8 算子函数

定义
T r ( A ) = ∑ i = 1 n A i i Tr(A) = \sum_{i=1}^nA_{ii} Tr(A)=i=1nAii
如果有一组正交单位特征基 { ∣ i ⟩ } \{\ket i\} {i},则存在 T r ( A ) = ∑ i ⟨ i ∣ A ∣ i ⟩ Tr(A) = \sum_i \bra i A \ket i Tr(A)=iiAi.

性质

  • T r ( A + B ) = T r ( A ) + T r ( B ) Tr(A+B) = Tr(A) + Tr(B) Tr(A+B)=Tr(A)+Tr(B)

  • T r ( c A ) = c T r ( A ) Tr(cA) = cTr(A) Tr(cA)=cTr(A)

  • T r ( A B ) = T r ( B A ) Tr(AB) = Tr(BA) Tr(AB)=Tr(BA)

    证明

    T r ( A B ) = ∑ i ⟨ i ∣ A B ∣ i ⟩ = ∑ i k ⟨ i ∣ A ∣ k ⟩ ⟨ k ∣ B ∣ i ⟩ = ∑ i k ⟨ k ∣ B ∣ i ⟩ ⟨ i ∣ A ∣ k ⟩ = ∑ k ⟨ k ∣ B A ∣ k ⟩ = T r ( B A ) Tr(AB) = \sum_i \bra i A B \ket i = \sum_{ik} \bra i A \ket k \bra k B \ket i = \sum_{ik}\bra k B \ket i \bra i A \ket k = \sum_k \bra k BA \ket k = Tr(BA) Tr(AB)=iiABi=ikiAkkBi=ikkBiiAk=kkBAk=Tr(BA)

  • T r ( A 1 A 2 . . . A n ) = T r ( A 2 A 3 . . . A n A 1 ) = . . . = T r ( A n A 1 . . . A n − 1 ) Tr(A_1A_2...A_n) = Tr(A_2A_3...A_nA_1) = ... = Tr(A_nA_1...A_{n-1}) Tr(A1A2...An)=Tr(A2A3...AnA1)=...=Tr(AnA1...An1)

迹与表象选择无关:选取 { ∣ i ⟩ } \{\ket i\} {i} { ∣ j ⟩ } \{\ket j\} {j} 两组基, ∑ i ⟨ i ∣ A ∣ i ⟩ = ∑ i j ⟨ i ∣ j ⟩ ⟨ j ∣ A ∣ i ⟩ = ∑ i j ⟨ j ∣ A ∣ i ⟩ ⟨ i ∣ j ⟩ = ∑ j ⟨ j ∣ A ∣ j ⟩ \sum_i \bra{i} A \ket i = \sum_{ij}\braket {i|j} \bra j A \ket i = \sum_{ij} \bra j A \ket i \braket {i|j} = \sum_j \bra j A \ket j iiAi=ijijjAi=ijjAiij=jjAj.

任何幺正算符 U U U:
T r ( U † A U ) = T r ( U U † A ) = T r ( A ) Tr(U^{\dagger}AU) = Tr(UU^{\dagger}A) = Tr(A) Tr(UAU)=Tr(UUA)=Tr(A)
算符期望值可写成迹:
T r ( A ∣ α ⟩ ⟨ α ∣ ) = ∑ i ⟨ i ∣ A ∣ α ⟩ ⟨ α ∣ i ⟩ = ∑ i ⟨ α ∣ i ⟩ ⟨ i ∣ A ∣ α ⟩ = ⟨ α ∣ A ∣ α ⟩ Tr(A\ket \alpha \bra \alpha) = \sum_i \bra i A \ket \alpha \braket {\alpha|i} = \sum_i \braket{\alpha|i}\bra i A \ket \alpha = \bra \alpha A \ket \alpha Tr(Aαα)=iiAααi=iαiiAα=αAα

∣ ψ ⟩ \ket \psi ψ 扩展成一个以 ψ \psi ψ 为首个元的标准正交基 ∣ i ⟩ \ket i i,因此 ⟨ α ∣ i ⟩ = δ α i \braket {\alpha|i} = \delta_{\alpha i} αi=δαi.

2.1.9 对易式和反对易式

两个算子 A A A B B B 之间的对易式定义为 [ A , B ] = A B − B A [A,B]=AB-BA [A,B]=ABBA.

A B = B A AB = BA AB=BA,则说明 A A A B B B 是对易的。

两个算子 A A A B B B 的反对易式定义为 { A , B } = A B + B A \{A,B\} = AB + BA {A,B}=AB+BA.

{ A , B } = 0 \{A,B\} = 0 {A,B}=0,则说明 A A A B B B 反对易。

同时对角化定理

A A A B B B 是厄密算子,当且仅当存在一个标准正交基,使 A A A B B B 在这个基下同时是对角的,则 [ A , B ] = 0 [A,B] = 0 [A,B]=0.在这种情况下, A A A B B B 称为可同时对角化。

Gram-Schmidt正交化(构造正交归一基)

考虑完备集 { ∣ α 1 ⟩ , ∣ α 2 ⟩ , . . . , ∣ α n ⟩ } \{\ket{\alpha_1},\ket{\alpha_2},...,\ket{\alpha_n}\} {α1,α2,...,αn}.

∣ β 1 ⟩ = ∣ α 1 ⟩ \ket{\beta_1} = \ket{\alpha_1} β1=α1.

∣ β i ⟩ = ∣ α i ⟩ − P 1... i − 1 ∣ α i ⟩ \ket{\beta_i} = \ket{\alpha_i} - P_{1...i-1}\ket{\alpha_i} βi=αiP1...i1αi (从 α i \alpha_i αi 中去除其在 ∣ β 1 ⟩ , . . . , ∣ β i − 1 ⟩ \ket{\beta_1},...,\ket{\beta_{i-1}} β1,...,βi1 上的分量)

其中 P 1... i − 1 = ∑ k = 1 i − 1 ∣ β ′ ⟩ ⟨ β ′ ∣ P_{1...i-1} = \sum_{k=1}^{i-1}\ket{\beta^{'}}\bra{\beta^{'}} P1...i1=k=1i1ββ ∣ β 1 ′ ⟩ , . . . , ∣ β i − 1 ′ ⟩ \ket{\beta^{'}_1},...,\ket{\beta^{'}_{i-1}} β1,...,βi1 张成的子空间的投影算符。

可以得到 ∣ β i ⟩ = ∣ α i ⟩ − ∑ k = 1 i − 1 ⟨ β k ∣ α i ⟩ ⟨ β k ∣ β k ⟩ ∣ β k ⟩ \ket{\beta_i} = \ket{\alpha_i} - \sum_{k=1}^{i-1}\frac{\braket{\beta_k|\alpha_i}}{\braket{\beta_k|\beta_k}}\ket{\beta_k} βi=αik=1i1βkβkβkαiβk

β ′ = ∣ β i ⟩ ∣ ∣ ∣ β i ⟩ ∣ ∣ , i = 1 , 2 , . . . , n \beta^{'} = \frac{\ket{\beta_i}}{||\ket{\beta_i}||}, i=1,2,...,n β=∣∣βi∣∣βi,i=1,2,...,n 正交归一基。

完备性关系

已知 α i \alpha_i αi ∣ α ⟩ \ket{\alpha} α 的基向量, a i = ⟨ α i ∣ α ⟩ a_i = \braket{\alpha_i|\alpha} ai=αiα ∑ i ∣ α i ⟩ ⟨ α i ∣ = I \sum_i \ket{\alpha_i}\bra{\alpha_i} = I iαiαi=I.

证明: ( ∑ i ∣ α i ⟩ ⟨ α i ∣ ) ∣ α ⟩ = ∑ i ∣ α i ⟩ ⟨ α i ∣ α ⟩ = ∑ i a i ∣ α i ⟩ = ∣ α ⟩ (\sum_i \ket{\alpha_i}\bra{\alpha_i})\ \ket{\alpha} = \sum_i\ket{\alpha_i}\braket{\alpha_i|\alpha} = \sum_i a_i \ket{\alpha_i} = \ket{\alpha} (iαiαi) α=iαiαiα=iaiαi=α,因此 ∑ i ∣ α i ⟩ ⟨ α i ∣ = I \sum_i \ket{\alpha_i}\bra{\alpha_i} = I iαiαi=I.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/190945.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring后端HttpClient实现微信小程序登录

这是微信官方提供的时序图。我们需要关注的是前后端的交互,以及服务端如何收发网络请求。 小程序端 封装基本网络请求 我们先封装一个基本的网络请求。 const baseUrl"localhost:8080" export default{sendRequsetAsync } /* e url:目标页…

nodejs+vue+python+PHP+微信小程序-安卓-房产中介管理信息系统的设计与实现-计算机毕业设计

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

【学习辅助】Axure手机时间管理APP原型,告别手机控番茄任务模板

作品概况 页面数量:共 30 页 兼容软件:Axure RP 9/10,不支持低版本 应用领域:时间管理、系统工具 作品申明:页面内容仅用于功能演示,无实际功能 作品特色 本品为「手机时间管理」APP原型,…

机器视觉系统的组成

图像获取 光学系统采集图像,图像转换成模拟格式并传入计算机存储器。 图像处理和分析 处理器运用不同的算法来提高对结论有重要影响的图像要素并形成数据作为判决依据。 判决和输出 处理器的控制程序根据收到的数据做出结论并输出信息作反馈控制等应用。

EasyPOI实现excel文件导出

EasyPOI真的是一款非常好用的文件导出工具&#xff0c;相较于传统的一行一列的数据导出&#xff0c;这种以实体类绑定生成的方式真的非常方便&#xff0c;也希望大家能够了解、掌握其使用方法&#xff0c;下面就用一个实例来简单介绍一下EasyPOI的使用。 1.导入依赖 <!-- e…

P6入门:项目初始化9-项目详情之资源 Resource

前言 使用项目详细信息查看和编辑有关所选项目的详细信息&#xff0c;在项目创建完成后&#xff0c;初始化项目是一项非常重要的工作&#xff0c;涉及需要设置的内容包括项目名&#xff0c;ID,责任人&#xff0c;日历&#xff0c;预算&#xff0c;资金&#xff0c;分类码等等&…

数据结构 | 队列的实现

数据结构 | 队列的实现 文章目录 数据结构 | 队列的实现队列的概念及结构队列的实现队列的实现头文件&#xff0c;需要实现的接口 Queue.h初始化队列队尾入队列【重点】队头出队列【重点】获取队列头部元素获取队列队尾元素获取队列中有效元素个数检测队列是否为空销毁队列 Que…

ChatGPT 4 OpenAI 数据分析动态可视化案例

数据分析可视化是一种将原始数据转化为图形或图像的方法,使得数据更易理解和解读。这种方法能够帮助我们更清楚地看到数据中的模式、趋势和关联性,从而更好地理解数据,并据此做出决策。 数据分析可视化的一些常见形式包括: 1. 折线图:常用于展示数据随时间的变化趋势。 …

Maya v2024(3D动画制作软件)

Maya 2024是一款三维计算机图形动画制作软件。它被广泛应用于电影、电视、游戏、动画等领域中&#xff0c;用于创建各种三维模型、场景、特效和动画。 以下是Maya的主要特点&#xff1a; 强大的建模工具&#xff1a;Maya提供了各种建模工具&#xff0c;如多边形建模、NURBS建模…

基于XML的声明式事务

场景模拟 参考基于注解的声明式事务 修改Spring的配置文件 将Spring配置文件中去掉tx:annotation-driven标签&#xff0c;并添加配置&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org…

nacos适配达梦数据库

一、下载源码 源码我直接下载gitee上nacos2.2.3的&#xff0c;具体链接&#xff1a;https://gitee.com/mirrors/Nacos/tree/2.2.3&#xff0c;具体如下图&#xff1a; 二、集成达梦数据库驱动 解压源码包&#xff0c;用idea打开源码&#xff0c;等idea和maven编译完成&#xff…

el-table解决数据过少小于高度有留白的问题

问题:给el-table设置个高度,高度为500px,之后就添加如下4条数据,那么底部就没数据,直接就空白了,本文章就是为了解决这个问题,如果底部留白那么就添加几条空数据就行了.如果数据已达到高度了那么就不会留白了 1.效果 这个空列可以根据高度来决定添加几个空格子去铺满列表&…

P6入门:项目初始化5-项目支出计划Spending Plan

前言 使用项目详细信息查看和编辑有关所选项目的详细信息&#xff0c;在项目创建完成后&#xff0c;初始化项目是一项非常重要的工作&#xff0c;涉及需要设置的内容包括项目名&#xff0c;ID,责任人&#xff0c;日历&#xff0c;预算&#xff0c;资金&#xff0c;分类码等等&…

路由器的结构以及工作原理

目录 路由器的结构 交换结构三种常用的交换方式 1.通过存储器 2.通过总线 3.通过纵横交换结构&#xff08;crossbar switch fabric&#xff09; 路由器的结构 路由器结构可划分为两大部分&#xff1a;路由选择部分&#xff0c;分组转发部分 路由选择部分也叫做控制部分&…

VB.net TCP服务端监听端口接收客户端RFID网络读卡器上传的读卡数据

本 示例使用设备介绍&#xff1a;WIFI/TCP/UDP/HTTP协议RFID液显网络读卡器可二次开发语音播报POE-淘宝网 (taobao.com) Imports System.Threading Imports System.Net Imports System.Net.Sockets Public Class Form1Dim ListenSocket As SocketDim Dict As New Dictionary(Of…

Azure 机器学习:在 Azure 机器学习中使用 Azure OpenAI 模型

目录 一、环境准备二、Azure 机器学习中的 OpenAI 模型是什么&#xff1f;三、在机器学习中访问 Azure OpenAI 模型连接到 Azure OpenAI部署 Azure OpenAI 模型 四、使用自己的训练数据微调 Azure OpenAI 模型使用工作室微调微调设置训练数据自定义微调参数部署微调的模型 使用…

基于python+TensorFlow+Django卷积网络算法+深度学习模型+蔬菜识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 介绍了TensorFlow在图像识别分类中的应用&#xff0c;并通过相关代码进行了讲解。通过TensorFlow提供的工具和库&am…

Linux学习第41天:Linux SPI 驱动实验(二):乾坤大挪移

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 本章的思维导图如下&#xff1a; 二、I.MX6U SPI主机驱动分析 主机驱动一般都是由SOC厂商写好的。不作为重点需要掌握的内容。 三、SPI设备驱动编写流程 1、SP…

【广州华锐视点】海外制片人VR虚拟情景教学带来全新的学习体验

虚拟现实&#xff08;Virtual Reality&#xff0c;简称VR&#xff09;是一种利用电脑模拟产生一个三维的虚拟世界&#xff0c;提供用户关于视觉、听觉、触觉等感官的模拟体验的技术。随着科技的进步&#xff0c;VR已经被广泛应用到许多领域&#xff0c;包括游戏、教育、医疗、房…

轻量封装WebGPU渲染系统示例<29>- 深度模糊DepthBlur(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/DepthBlur.ts 当前示例运行效果: 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源码如下: const blurRTTTex0 { diffuse: { uuid: "rtt0", …