深度学习+opencv+python实现车道线检测 - 自动驾驶 计算机竞赛

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 卷积神经网络
    • 3.1卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 YOLOV5
  • 6 数据集处理
  • 7 模型训练
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的自动驾驶车道线检测算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

从汽车的诞生到现在为止已经有一百多年的历史了,随着车辆的增多,交通事故频繁发生,成为社会发展的隐患,人们的生命安全受到了严重威胁。多起事故发生原因中,都有一个共同点,那就是因为视觉问题使驾驶员在行车时获取不准确的信息导致交通事故的发生。为了解决这个问题,高级驾驶辅助系统(ADAS)应运而生,其中车道线检测就是ADAS中相当重要的一个环节。利用机器视觉来检测车道线相当于给汽车安装上了一双“眼睛”,从而代替人眼来获取车道线信息,在一定程度上可以减少发生交通事故的概率。
本项目基于yolov5实现图像车道线检测。

2 实现效果

在这里插入图片描述

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。
在这里插入图片描述

3.1卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。
在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。
在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

4 YOLOV5

简介
基于卷积神经网络(convolutional neural network, CNN)的目标检测模型研究可按检测阶段分为两类,一 类 是 基 于 候 选 框
的 两 阶 段 检 测 , R-CNN 、 Fast R-CNN、Faster R-CNN、Mask R-CNN都是基于
目标候选框的两阶段检测方法;另一类是基于免候选框的单阶段检测,SSD、YOLO系列都是典型的基于回归思想的单阶段检测方法。

YOLOv5 目标检测模型 2020年由Ultralytics发布的YOLOv5在网络轻量化 上贡献明显,检测速度更快也更加易于部署。与之前
版本不同,YOLOv5 实现了网络架构的系列化,分别 是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、
YOLOv5x。这5种模型的结构相似,通过改变宽度倍 数(Depth multiple)来改变卷积过程中卷积核的数量, 通 过 改 变 深 度 倍 数
(Width multiple) 来 改 变 BottleneckC3(带3个CBS模块的BottleneckCSP结构)中
C3的数量,从而实现不同网络深度和不同网络宽度之 间的组合,达到精度与效率的平衡。YOLOv5各版本性能如图所示:

在这里插入图片描述

模型结构图如下:

在这里插入图片描述

YOLOv5s 模型算法流程和原理

YOLOv5s模型主要算法工作流程原理:

(1) 原始图像输入部分加入了图像填充、自适应 锚框计算、Mosaic数据增强来对数据进行处理增加了 检测的辨识度和准确度。

(2) 主干网络中采用Focus结构和CSP1_X (X个残差结构) 结构进行特征提取。在特征生成部分, 使用基于SPP优化后的SPPF结构来完成。

(3) 颈部层应用路径聚合网络和CSP2_X进行特征融合。

(4) 使用GIOU_Loss作为损失函数。

关键代码:

6 数据集处理

获取摔倒数据集准备训练,如果没有准备好的数据集,可自己标注,但过程会相对繁琐

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

数据保存

点击save,保存txt。

在这里插入图片描述

7 模型训练

配置超参数
主要是配置data文件夹下的yaml中的数据集位置和种类:

在这里插入图片描述

配置模型
这里主要是配置models目录下的模型yaml文件,主要是进去后修改nc这个参数来进行类别的修改。

在这里插入图片描述

目前支持的模型种类如下所示:

在这里插入图片描述
训练过程
在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/193374.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【libGDX】初识libGDX

1 前言 libGDX 是一个开源且跨平台的 Java 游戏开发框架,于 2010 年 3 月 11 日推出 0.1 版本,它通过 OpenGL ES 2.0/3.0 渲染图像,支持 Windows、Linux、macOS、Android、iOS、Web 等平台,提供了统一的 API,用户只需要…

【JavaSE语法】类和对象(二)

六、 封装 6.1 封装的概念 面向对象程序三大特性:封装、继承、多态。而类和对象阶段,主要研究的就是封装特性。 封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互…

大模型时代的机器人研究

机器人研究的一个长期目标是开发能够在物理上不同的环境中执行无数任务的“多面手”机器人。对语言和视觉领域而言,大量的原始数据可以训练这些模型,而且有虚拟应用程序可用于应用这些模型。与上述两个领域不同,机器人技术由于被锚定在物理世…

Spark通过三种方式创建DataFrame

通过toDF方法创建DataFrame 通过toDF的方法创建 集合rdd中元素类型是样例类的时候,转成DataFrame之后列名默认是属性名集合rdd中元素类型是元组的时候,转成DataFrame之后列名默认就是_N集合rdd中元素类型是元组/样例类的时候,转成DataFrame…

zabbix中图形可视化页面中文乱码解决

在window 电脑中的 C:\Windows\Fonts 里面是字体文件,里面有一个 SIMKAI.TTF (有的是小写) 这个是楷体 将该文件复制到虚拟机中 怎么导入应该不需要我说吧 查看zabbix的字体文件在哪个目录下 [rootlocalhost /]# find / -name fonts /boo…

基于安卓android微信小程序的装修家装小程序

项目介绍 巧匠家装小程序的设计主要是对系统所要实现的功能进行详细考虑,确定所要实现的功能后进行界面的设计,在这中间还要考虑如何可以更好的将功能及页面进行很好的结合,方便用户可以很容易明了的找到自己所需要的信息,还有系…

Qt控件按钮大全

​ 按钮 在 Qt 里,最常用使用的控件就是按钮了,有了按钮,我们就可以点击,从而响应事件,达到人机交互的效果。不管是嵌入式或者 PC 端,界面交互,少不了按钮。Qt 按钮部件是一种常用的部件之一,Qt 内置了六种按钮部件如下: (1) QPushButton:下压按钮 (2) QToolBu…

20231114在HP笔记本的ubuntu20.04系统下向RealmeQ手机发送PDF文件

20231114在HP笔记本的ubuntu20.04系统下向RealmeQ手机发送PDF文件 2023/11/14 14:11 手机:Realme Q 笔记本电脑:HP https://item.jd.com/100012583174.html 惠普(HP)战66 三代AMD版 14英寸轻薄笔记本电脑(锐龙7nm 六核…

基于PHP的化妆品销售网站,MySQL数据库,PHPstudy,前台用户+后台管理,完美运行,有一万多字论文

目录 演示视频 基本介绍 论文截图 系统截图 演示视频 基本介绍 基于PHP的化妆品销售网站,MySQL数据库,PHPstudy,原生PHP,前台用户后台管理,完美运行,有一万多字论文。 前台功能:用户的注册…

CPU vs GPU:谁更适合进行图像处理?

CPU 和 GPU 到底谁更适合进行图像处理呢?相信很多人在日常生活中都会接触到图像处理,比如修图、视频编辑等。那么,让我们一起来看看,在这方面,CPU 和 GPU 到底有什么不同,哪个更胜一筹呢? 一、C…

【Ubuntu】设置永不息屏与安装 dconf-editor

方式一、GUI界面进行设置 No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 20.04.6 LTS Release: 20.04 Codename: focal打开 Ubuntu 桌面环境的设置菜单。你可以通过点击屏幕右上角的系统菜单,然后选择设置。在设置菜单中,…

Pass基础-DevOps

,DevOps是Dev(开发)和Ops(运维/运营)的结合,它将人、流程、工具、工程实践等等结合起来应用到IT价值流的实现过程中,是一系列原则、方法、流程、实践、工具的综合体。DevOps面向应用的全生命周期…

React 高级教程

目录 前言setState函数式编程HooksMy HooksuseState定义原理函数式更新reduce 方法react 源码 useEffect定义原理无限循环 useCallback定义原理 useMemo定义比较 ReduxuseReducer定义使用应用 useContext 前言 在现代前端开发中,React已经成为了一种无法忽视的技术…

ESP32网络开发实例-将数据保存到InfluxDB时序数据库

将数据保存到InfluxDB时序数据库 文章目录 将数据保存到InfluxDB时序数据库1、InfluxDB介绍与安装3、软件准备4、硬件准备5、代码实现6、InfluxDB数据可视化在本文中,将介绍 InfluxDB 以及如何将其与 ESP32 开发板一起使用。 我们将向展示如何创建数据库桶并将 ESP32 数据发送…

探索人工智能领域——每日30个名词详解【day3】

目录 前言 正文 总结 🌈嗨!我是Filotimo__🌈。很高兴与大家相识,希望我的博客能对你有所帮助。 💡本文由Filotimo__✍️原创,首发于CSDN📚。 📣如需转载,请事先与我联系以…

C++ Qt 学习(六):Qt http 编程

1. http 基础 HTTP 基础教程C Web 框架 drogonoatpp 2. C Qt 用户登录、注册功能实现 login_register.h #pragma once#include <QtWidgets/QDialog> #include "ui_login_register.h" #include <QNetworkReply>class login_register : public QDialog…

Peoeasy机器人:原点无法重置问题

机械手在伺服关闭的模式下&#xff0c;插入定位插销&#xff0c;进入机构设定重置原点&#xff0c;发现PUU值没有变化 问题原因 台达软件版本比较多&#xff0c;每个版本重置原点的模式和马达偏差角的默认值是有一定差异的。再重置原点之前尽可能先确认一下重置原点的模式和马…

云服务器如何选?腾讯云2核2G3M云服务器88元一年!

作为一名程序员&#xff0c;在选择云服务器时&#xff0c;我们需要关注几个要点&#xff1a;网络稳定性、价格以及云服务商的规模。这些要素将直接影响到我们的使用体验和成本效益。接下来&#xff0c;我将为大家推荐一款性价比较高的轻应用云服务器。 腾讯云双11活动 腾讯云…

【计算思维】少儿编程蓝桥杯青少组计算思维题考试真题及解析B

STEMA考试-计算思维-U8级(样题) 1.浩浩的左⼿边是&#xff08; &#xff09;。 A.兰兰 B.⻉⻉ C.⻘⻘ D.浩浩 2.2时30分&#xff0c;钟⾯上时针和分针形成的⻆是什么⻆&#xff1f;&#xff08; &#xff09; A.钝⻆ B.锐⻆ C.直⻆ D.平⻆ 3.下⾯是⼀年级同学最喜欢的《⻄游记》…

SystemVerilog学习 (5)——接口

一、概述 验证一个设计需要经过几个步骤&#xff1a; 生成输入激励捕获输出响应决定对错和衡量进度 但是&#xff0c;我们首先需要一个合适的测试平台&#xff0c;并将它连接到设计上。 测试平台包裹着设计,发送激励并且捕获设计的输出。测试平台组成了设计周围的“真实世界”,…