基于 Amazon EKS 搭建开源向量数据库 Milvus

一、前言

生成式 AI(Generative AI)的火爆引发了广泛的关注,也彻底点燃了向量数据库(Vector Database)市场,众多的向量数据库产品开始真正出圈,走进大众的视野。

根据 IDC 的预测,到 2025 年,超过 80% 的业务数据将是非结构化的,以文本、图像、音频、视频或其他格式存储。而大规模存储和查询非结构化数据是一个非常大的挑战。

亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点 这里让它成为你的技术宝库!

在生成式 AI 和深度学习领域通常的做法是通过将非结构化数据转换为向量进行存储,并通过向量相似性搜索(Vector similarity search)技术进行语义相关性搜索。而快速地存储、索引和搜索 Embedding 向量,正是向量数据库的核心功能。

那么,什么是 Embedding 呢?简单地说,Embedding 就是浮点数的向量的嵌入式表征。两个向量之间的距离表示它们的相关性, 距离越近相关性越高,距离越远相关性越低。如果两个 Embedding 相似,就意味着他们代表的原始数据也是相似的。这一点与传统的关键词搜索有很大的不同。

图片

当前市面上主流的向量数据库可以分为两大类,一类是在既有数据库产品上进行扩展,例如 Amazon OpenSearch 服务通过 KNN 插件、Amazon RDS for PostgreSQL 通过 pgvector 扩展实现对向量的支持。另一类是独立的向量数据库产品,比较知名的有 Milvus、Zilliz Cloud(powered by Milvus)、Pinecone、Weaviate、Qdrant、Chroma 等。在这类向量数据库中,向量是一等公民,所有的功能都是围绕着它建立的。

Embedding 技术和向量数据库可以被广泛应用于各类 AI 驱动的应用场景,包括图片检索、视频分析、自然语言理解、推荐系统、定向广告、个性化搜索、智能客服和欺诈检测等。

在众多的向量数据库中,Milvus 是全球最流行的开源向量数据库之一,截止本文创作时至,在 Github 有超过 1.8 万颗 Star。且看 Milvus 的官方介绍:

  • Milvus 是一个高度灵活、可靠且速度极快的云原生开源向量数据库。它为 embedding 相似性搜索和 AI 应用程序提供支持,并努力使每个组织都可以访问向量数据库。 Milvus 可以存储、索引和管理由深度神经网络和其他机器学习(ML)模型生成的十亿级别以上的 embedding 向量。

本文主要探讨基于 Amazon EKS 等服务部署 Milvus 集群的实践。

二、架构说明

作为一款云原生的向量数据库产品,Milvus 的设计采用了共享存储的架构,存储计算完全分离,数据、查询和索引节点分离,并使用消息队列实现各个核心组件之间的解藕。核心工作节点是无状态的,因此可以提供极大的弹性和灵活性。

Milvus 遵循数据流和控制流分离的原则,整体分为了四个层次,分别为接入层(access layer)、协调服务(coordinator service)、工作节点(worker node)和存储层(storage)。

图片

Milvus 设计之初就支持 Kubernetes 平台。本文采用 Amazon EKS 作为底层容器平台,并使用 Amazon S3、Amazon MSK(Managed Streaming for Apache Kafka)、Amazon ELB 等托管服务分别用作其中的 Object Storage、Message storage、Load Balancer 等核心组件,以搭建可靠、弹性的 Milvus 数据库集群,使其更适合生产环境使用。

本文采用渐进的方式一步步地部署、优化 Milvus 集群,使您更容易理解 EKS 和 Milvus 部署和配置过程。

三、先决条件

本文使用命令行的方式创建 EKS 和部署 Milvus 数据库集群,因此需要如下的预备条件:

  1. 一台个人电脑或者 Amazon EC2,安装 Amazon CLI,并配置相应的权限。如果您使用 Amazon Linux 2 或者 Amazon Linux 2023,Amazon CLI 工具默认已经安装。
  2. 安装 EKS 相关工具,包括 Helm,Kubectl,eksctl 等。
  3. 一个 Amazon S3 存储桶。
  4. 一个 Amazon MSK 实例。
    MSK 创建注意事项:
    1)当前最新稳定版本的 Milvus(v2.2.8)依赖 Kafka 的 autoCreateTopics 特性,因此在创建 MSK 时需要使用自定义配置,并将属性 auto.create.topics.enable 由默认的 false 改为 true。另外,为了提高 MSK 的消息吞吐量,建议调大 message.max.bytes 和 replica.fetch.max.bytes 的值。详见 Custom MSK configurations。
auto.create.topics.enable=true
message.max.bytes=10485880
replica.fetch.max.bytes=20971760

2)Milvus 不支持 MSK 的 IAM role-based 认证,因此 MSK 创建时需要在安全配置里打开 SASL/SCRAM authentication 选项,并在 Secret Manager 里配置 username 和 password,详见 Sign-in credentials authentication with Amazon Secrets Manager。

图片

3)MSK 的安全组要允许 EKS 集群安全组或者 IP 地址段进行访问。

四、创建 EKS 集群

EKS 集群的创建方式有很多,如控制台、CloudFormation、eksctl 等。本文使用 eksctl 的方式。

  • eksctl 是一款简单的命令行工具,用于在 Amazon EKS 上创建和管理 Kubernetes 集群。eksctl 提供使用 Amazon EKS 节点创建新集群的最快、最简单的方式。如需查阅官方文档,请参阅 https://eksctl.io/?trk=cndc-detail。
  1. 首先,用如下内容创建 eks_cluster.yaml 文件。请将 cluster-name 替换为您的集群名称,将 region-code 替换为创建集群的亚马逊云科技区域,将 private-subnet-idx 替换为您的私有子网。注:该配置文件通过指定私有 subnets 的方式在现有的 VPC 创建 EKS。您也可以删除 VPC 及 subnets 的配置,这样 eksctl 会自动创建一个全新的 VPC。
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfigmetadata:name: <cluster-name>region: <region-code>version: "1.26"iam:withOIDC: trueserviceAccounts:- metadata:name: aws-load-balancer-controllernamespace: kube-systemwellKnownPolicies:awsLoadBalancerController: true- metadata:name: milvus-s3-access-sa# if no namespace is set, "default" will be used;# the namespace will be created if it doesn't exist alreadynamespace: milvuslabels: {aws-usage: "milvus"}attachPolicyARNs:- "arn:aws:iam::aws:policy/AmazonS3FullAccess"# Use existed VPC to create EKS.
# If you don't config vpc subnets, eksctl will automatically create a brand new VPC
vpc:subnets:private:us-west-2a: { id: <private-subnet-id1> }us-west-2b: { id: <private-subnet-id2> }us-west-2c: { id: <private-subnet-id3> }managedNodeGroups:- name: ng-1-milvuslabels: { role: milvus }instanceType: m6i.2xlargedesiredCapacity: 3privateNetworking: trueaddons:
- name: vpc-cni # no version is specified so it deploys the default versionattachPolicyARNs:- arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
- name: corednsversion: latest # auto discovers the latest available
- name: kube-proxyversion: latest
- name: aws-ebs-csi-driverwellKnownPolicies:      # add IAM and service accountebsCSIController: true

然后,运行 eksctl 命令创建 EKS 集群。

eksctl create cluster -f eks_cluster.yaml
  • 该过程将创建如下资源:
  • 创建一个指定版本的 EKS 集群。
  • 创建一个拥有 3 个 m6i.2xlarge EC2 实例的托管节点组。
  • 创建 IAM OIDC 身份提供商和名为 amazon-load-balancer-controller 的 ServiceAccount,后文安装 Amazon Load Balancer Controller 时使用。
  • 创建一个命名空间 milvus,并在此命名空间里创建名 milvus-s3-access-sa 的 ServiceAccount。后文为 Milvus 配置 S3 做 Object Storage 时使用。

    • 注意,此处为了方便授予了 milvus-s3-access-sa 所有 S3 访问权限,在生产环境部署时建议遵循最小化授权原则,只授予指定用于 Milvus 的 S3 存储桶的访问权限。
  • 安装多个插件,其中 vpc-cnicorednskube-proxy 为 EKS 必备核心插件。amazon-ebs-csi-driver 是 Amazon EBS CSI 驱动程序,允许 EKS 集群管理 Amazon EBS 持久卷的生命周期。

等待集群创建完成。集群创建过程中会自动创建或者更新 kubeconfig 文件。您也可以运行如下命令手动更新,注意将 region-code 替换为创建集群的亚马逊云科技区域,将 cluster-name 替换为您的集群名称。

amazon eks update-kubeconfig --region <region-code> --name <cluster-name>
复制代码集群创建完毕之后,运行如下命令就可以查看您的集群节点。

kubectl get nodes -A -o wide

        2. 创建 ebs-sc StorageClass,配置 GP3 作为存储类型,并设置为 default StorageClass。Milvus 使用 etcd 作为 Meta Storage,需要依赖该 StorageClass 创建和管理 PVC。

cat <<EOF | kubectl apply -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:name: ebs-scannotations:storageclass.kubernetes.io/is-default-class: "true"
provisioner: ebs.csi.aws.com
volumeBindingMode: WaitForFirstConsumer
parameters:type: gp3
EOF

并将原来的 gp2 StorageClass 设置为非默认:

kubectl patch storageclass gp2 -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'

        3.安装 Amazon Load Balancer Controller,后文中 Milvus Service 和 Attu Ingress 需要用到该 Controller,我们在此提前进行安装。

添加 eks-charts 仓库并更新。

helm repo add eks https://aws.github.io/eks-charts
helm repo update

安装 Amazon Load Balancer Controller。请将 cluster-name 替换为您的集群名称。此处名为 amazon-load-balancer-controller 的 ServiceAccount 已经在创建 EKS 集群时创建。

helm install aws-load-balancer-controller eks/aws-load-balancer-controller \-n kube-system \--set clusterName=<cluster-name> \--set serviceAccount.create=false \--set serviceAccount.name=aws-load-balancer-controller 

检查 Controller 是否安装成功。

kubectl get deployment -n kube-system aws-load-balancer-controller

输出例如下。

NAME                           READY   UP-TO-DATE   AVAILABLE   AGE
aws-load-balancer-controller   2/2     2            2           12m

五、部署 Milvus 数据库

Milvus 支持 Operator 和 Helm 等多种部署方式,相比较而言,通过 Operator 进行部署和管理要更为简单,但 Helm 方式要更加直接和灵活,因此本文采用 Helm 的部署方式。 在使用 Helm 部署 Milvus 时,可以通过配置文件 values.yaml 进行自定义配置,点击 values.yaml 可以查看所有配置选项。 Milvus 默认创建 in-cluster 的 minio 和 pulsar 分别作为 Object Storage 和 Message Storage。为了更适合在生产环境使用,我们通过配置文件使用 S3 和 MSK 作为替代。

  1. 首先,添加 Milvus Helm 仓库并更新。

    helm repo add milvus https://milvus-io.github.io/milvus-helm/
    helm repo update

  2. 配置 S3 作为 Object Storage。配置 serviceAccount 是为了授予 Milvus 访问 S3 的权限(此处为 milvus-s3-access-sa,在创建 EKS 集群时已经创建)。注意将 <region-code> 替换为创建集群的亚马逊云科技区域。将 <bucket-name> 替换为 S3 存储桶的名字, <root-path> 替换为 S3 存储桶的前缀(可以为空)。
###################################
# Service account
# - this service account are used by External S3 access
###################################
serviceAccount:create: falsename: milvus-s3-access-sa###################################
# Close in-cluster minio
###################################
minio:enabled: false###################################
# External S3
# - these configs are only used when `externalS3.enabled` is true
###################################
externalS3:enabled: truehost: "s3.<region-code>.amazonaws.com"port: "443"useSSL: truebucketName: "<bucket-name>"rootPath: "<root-path>"useIAM: truecloudProvider: "aws"iamEndpoint: ""

        3.配置 MSK 作为 Message Storage。注意将 <broker-list> 替换为 MSK 的 SASL/SCRAM 认证类型对应的 endpoint 地址,<username> 和 <password> 替换为 MSK 的账号和密码。

注意:MSK 的安全组要配置允许 EKS 集群安全组或者 IP 地址段进行访问。

图片

###################################
# Close in-cluster pulsar
################################### 
pulsar:enabled: false###################################
# External kafka
# - these configs are only used when `externalKafka.enabled` is true
###################################
externalKafka:enabled: truebrokerList: "<broker-list>"securityProtocol: SASL_SSLsasl:mechanisms: SCRAM-SHA-512username: "<username>"password: "<password>"

4. 将 2-3 步的配置合并并保存为 milvus_cluster.yaml 文件,并使用 Helm 命令创建 Milvus(部署在 milvus 命名空间)。注意,您可以将 demo 替换为自定义名称。

helm install demo milvus/milvus -n milvus -f milvus_cluster.yaml

运行如下命令检查 pods 的状态。

kubectl get pods -n milvus

running 状态表明创建成功。

NAME                                      READY   STATUS    RESTARTS   AGE
demo-etcd-0                               1/1     Running   0          114s
demo-etcd-1                               1/1     Running   0          114s
demo-etcd-2                               1/1     Running   0          114s
demo-milvus-datacoord-548bf76868-b6vzb    1/1     Running   0          115s
demo-milvus-datanode-5fc794dd8b-z8l2x     1/1     Running   0          115s
demo-milvus-indexcoord-c9455db7d-sx22q    1/1     Running   0          115s
demo-milvus-indexnode-58bd66bbb7-f5xbp    1/1     Running   0          114s
demo-milvus-proxy-664c68c7b4-x6jqn        1/1     Running   0          114s
demo-milvus-querycoord-679bcf7497-7xg4v   1/1     Running   0          115s
demo-milvus-querynode-64f94b6f97-wl5v4    1/1     Running   0          114s
demo-milvus-rootcoord-5f9b687b57-d22s6    1/1     Running   0          115s 

5. 获取 Milvus 访问终端节点。

kubectl get svc -n milvus

输出示例如下,demo-milvus 就是 Milvus 的服务终端节点,其中 19530 为数据库访问端口,9091 为 Metrics 访问端口。默认的 Service 类型为 ClusterIP ,这种类型只能在 EKS 集群内部访问。我们将在下一章节讲解如何配置为允许集群外访问。

NAME                     TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)              AGE
demo-etcd                ClusterIP   172.20.103.138   <none>        2379/TCP,2380/TCP    6m46s
demo-etcd-headless       ClusterIP   None             <none>        2379/TCP,2380/TCP    6m46s
demo-milvus              ClusterIP   172.20.219.33    <none>        19530/TCP,9091/TCP   6m46s
demo-milvus-datacoord    ClusterIP   172.20.214.106   <none>        13333/TCP,9091/TCP   6m46s
demo-milvus-datanode     ClusterIP   None             <none>        9091/TCP             6m46s
demo-milvus-indexcoord   ClusterIP   172.20.106.51    <none>        31000/TCP,9091/TCP   6m46s
demo-milvus-indexnode    ClusterIP   None             <none>        9091/TCP             6m46s
demo-milvus-querycoord   ClusterIP   172.20.136.213   <none>        19531/TCP,9091/TCP   6m46s
demo-milvus-querynode    ClusterIP   None             <none>        9091/TCP             6m46s
demo-milvus-rootcoord    ClusterIP   172.20.173.98    <none>        53100/TCP,9091/TCP   6m46s

六、优化 Milvus 配置

至此,我们已经成功地部署了 Milvus 集群,但很多 Milvus 的默认配置无发满足生产环境自定义需求,本部分主要围绕如下三个方面进行配置优化。

  1. Milvus 默认部署 ClusterIP 类型的 service,这种 service 只能在 EKS 内部访问,将 Milvus service 更改为 Loadbalancer 类型,使集群外也可以进行访问。
  2. 安装 Attu,通过可视化界面管理 Milvus 数据库。
  3. 优化各个组件的配置,使其满足于您的负载情况。

前两项配置需要用到 Amazon Load Balancer Controller,请确认在第三章中完成安装。

6.1 配置 Milvus 服务可供 EKS 集群外访问

Helm 支持在创建之后使用 helm upgrade 命令进行配置更新,我们采用这种方式对 Milvus 进行配置。 使用如下代码创建 milvus_service.yaml 配置文件,该配置文件指定使用 Load Balancer Controller 创建 LoadBalancer 类型的 service,以方便在集群外进行访问。LoadBalancer 类型的 Service 使用 Amazon NLB 作为负载均衡器。根据安全最佳实践,此处 amazon-load-balancer-scheme 默认配置为 internal 模式,即只允许内网访问 Milvus。如果您确实需要通过 Internet 访问 Milvus,需要将 internal 更改为 internet-facing。点击查看 NLB 配置说明。

## Expose the Milvus service to be accessed from outside the cluster (LoadBalancer service).
## or access it from within the cluster (ClusterIP service). Set the service type and the port to serve it.
##
service:type: LoadBalancerport: 19530annotations: service.beta.kubernetes.io/aws-load-balancer-type: external #AWS Load Balancer Controller fulfills services that has this annotation service.beta.kubernetes.io/aws-load-balancer-name : milvus-service #User defined name given to AWS Network Load Balancerservice.beta.kubernetes.io/aws-load-balancer-scheme: internal # internal or internet-facing, later allowing for public access via internetservice.beta.kubernetes.io/aws-load-balancer-nlb-target-type: ip #The Pod IPs should be used as the target IPs (rather than the node IPs)

然后使用 Helm 更新配置文件。

helm upgrade demo milvus/milvus -n milvus --reuse-values -f milvus_service.yaml

运行如下命令:

kubectl get svc -n milvus

可以看到 demo-milvus 服务已经更改为 LoadBalancer 类型,底层使用 NLB 作为服务均衡器,其中 EXTERNAL-IP 一栏即为集群外访问地址。

NAME                     TYPE           CLUSTER-IP       EXTERNAL-IP                                               PORT(S)                          AGE
demo-etcd                ClusterIP      172.20.103.138   <none>                                                    2379/TCP,2380/TCP                62m
demo-etcd-headless       ClusterIP      None             <none>                                                    2379/TCP,2380/TCP                62m
demo-milvus              LoadBalancer   172.20.219.33    milvus-nlb-xxxx.elb.us-west-2.amazonaws.com   19530:31201/TCP,9091:31088/TCP   62m
demo-milvus-datacoord    ClusterIP      172.20.214.106   <none>                                                    13333/TCP,9091/TCP               62m
demo-milvus-datanode     ClusterIP      None             <none>                                                    9091/TCP                         62m
demo-milvus-indexcoord   ClusterIP      172.20.106.51    <none>                                                    31000/TCP,9091/TCP               62m
demo-milvus-indexnode    ClusterIP      None             <none>                                                    9091/TCP                         62m
demo-milvus-querycoord   ClusterIP      172.20.136.213   <none>                                                    19531/TCP,9091/TCP               62m
demo-milvus-querynode    ClusterIP      None             <none>                                                    9091/TCP                         62m
demo-milvus-rootcoord    ClusterIP      172.20.173.98    <none>                                                    53100/TCP,9091/TCP               62m
6.2 安装可视化管理工具 Attu

Attu 是 Milvus 的高效开源管理工具。它具有直观的图形用户界面(GUI),使您可以轻松地与数据库进行交互。 只需点击几下,您就可以可视化集群状态、管理元数据、执行数据查询等等。

本部分我们使用 Helm 安装并配置 Attu。

首先,使用如下代码创建 milvus_attu.yaml 配置文件。在配置文件里开启 Attu 选项,配置使用 Amazon ALB 作为 Ingress,并设置为 internet-facing 类型可通过 Internet 亦可访问 Attu。点击查看 ALB 配置说明。

attu:enabled: truename: attuingress:enabled: trueannotations: kubernetes.io/ingress.class: alb # Annotation: set ALB ingress typealb.ingress.kubernetes.io/scheme: internet-facing #Places the load balancer on public subnetsalb.ingress.kubernetes.io/target-type: ip #The Pod IPs should be used as the target IPs (rather than the node IPs)alb.ingress.kubernetes.io/group.name: attu # Groups multiple Ingress resourceshosts:- 

然后使用 Helm 更新配置文件。

helm upgrade demo milvus/milvus -n milvus --reuse-values -f milvus_attu.yaml

再次运行如下命令:

kubectl get ingress -n milvus

可以看到名为 demo-milvus-attu 的 Ingress,其中 ADDRESS 一栏即为访问地址。

NAME               CLASS    HOSTS   ADDRESS                                     PORTS   AGE
demo-milvus-attu   <none>   *       k8s-attu-xxxx.us-west-2.elb.amazonaws.com   80      27s

使用浏览器打开 Ingress 地址,即可看到如下界面,点击 Connect 即可进行登录。

图片

登录之后就可以通过可视化的方式管理 Milvus 数据库。

图片

6.3 优化 Milvus 的资源分配

本部分介绍如何调整 EKS 上 Milvus 组件资源分配。 通常,您在生产环境中分配给 Milvus 集群的资源应该与工作负载成正比。虽然您可以在集群运行时更新配置,但我们建议在正式部署工作负载之前进行配置。

通过前边的架构图我们可以看到 Milvus 包含多个独立且解藕的组件,运行 kubectl get deployment -n milvus 命令可以看到 Milvus 的核心组件。

NAME                     READY   UP-TO-DATE   AVAILABLE   AGE
demo-milvus-attu         1/1     1            1           2d20h
demo-milvus-datacoord    1/1     1            1           2d22h
demo-milvus-datanode     1/1     1            1           2d22h
demo-milvus-indexcoord   1/1     1            1           2d22h
demo-milvus-indexnode    1/1     1            1           2d22h
demo-milvus-proxy        1/1     1            1           2d22h
demo-milvus-querycoord   1/1     1            1           2d22h
demo-milvus-querynode    1/1     1            1           2d22h
demo-milvus-rootcoord    1/1     1            1           2d22h

在默认情况下,Milvus 未明确指定 Pod 的 CPU 和 Memory 资源配置,且各个组件的 replica 为 1。我们可以根据业务负载为这些组件灵活分配资源,Milvus 官网也提供了 配置生成工具,可以根据数据量、向量维度和索引类型等多个维度给出配置建议,并一键生成 Helm 配置文件。

如下配置是在 100 万条数据、128 维向量和 HNSW 索引类型的条件下,工具给出的配置建议。

rootCoordinator:replicas: 1resources: limits:cpu: 1memory: 2Gi
indexCoordinator:replicas: 1resources: limits:cpu: "0.5"memory: 0.5Gi
queryCoordinator:replicas: 1resources: limits:cpu: "0.5"memory: 0.5Gi
dataCoordinator:replicas: 1resources: limits:cpu: "0.5"memory: 0.5Gi
proxy:replicas: 1resources: limits:cpu: 1memory: 4Gi
queryNode:replicas: 1resources: limits:cpu: 1memory: 4Gi
dataNode:replicas: 1resources: limits:cpu: 1memory: 4Gi
indexNode:replicas: 1resources: limits:cpu: 4memory: 8Gi

使用以上配置创建 milvus_resources.yaml 文件,并使用 Helm 命令进行更新。

helm upgrade demo milvus/milvus -n milvus --reuse-values -f milvus_resources.yaml

以其中一个资源变更的 pod 为例,运行 kubectl describe pod <pod-name> -n milvus 就可以看到 Pod 的 cpu 和 memory 资源分配已经更新为指定值。

Containers:querynode:Container ID:  containerd://0c29912397aa1b18471b1ec90d6da5bb6ae855fe14e3b1f85f5e60d01da3ca9cImage:         milvusdb/milvus:v2.2.8Image ID:      docker.io/milvusdb/milvus@sha256:e6ecd1a10b02dd9b179333b351caa6b685d430a32c1c1a3c9e80ec2dd9b4549dPorts:         21123/TCP, 9091/TCPHost Ports:    0/TCP, 0/TCPArgs:/milvus/tools/run-helm.shmilvusrunquerynodeState:          RunningStarted:      Wed, 17 May 2023 09:08:11 +0000Ready:          TrueRestart Count:  0Limits:cpu:     1memory:  4GiRequests:cpu:      1memory:   4Gi

七、测试 Milvus 集群

我们使用 Milvus 官方的示例代码来测试 Milvus 集群能否正常工作。首先,直接下载 hello_milvus.py 示例代码。

wget https://raw.githubusercontent.com/milvus-io/pymilvus/v2.2.8/examples/hello_milvus.py

修改示例代码中的 host 为 Milvus 服务终端节点地址。

print(fmt.format("start connecting to Milvus"))
connections.connect("default", host="milvus-nlb-xxx.elb.us-west-2.amazonaws.com", port="19530")

运行代码:

python3 hello_milvus.py

返回如下结果即证明 Milvus 运行正常。

=== start connecting to Milvus     ===Does collection hello_milvus exist in Milvus: False=== Create collection `hello_milvus` ====== Start inserting entities       ===Number of entities in Milvus: 3000=== Start Creating index IVF_FLAT  ====== Start loading                  ===

该示例代码验证了 PyMilvus(Milvus 的 Python SDK)的基本操作流程,包括:

  1. 连接到 Milvus
  2. 创建 collection
  3. 插入数据
  4. 创建索引
  5. 搜索、查询和混合搜索
  6. 根据主键删除 entities
  7. 删除 collection

八、总结

本文介绍了基于 Amazon EKS 部署 Milvus 集群的方案,并在方案中集成 S3、MSK、ELB 等托管服务实现更高的弹性和可靠性。

当前,生成式 AI 领域的发展一日千里,各类大模型与向量数据库的结合也激发了无数的创新。近期,使用 LangChain、大语言模型(LLM)与向量数据库构建基于企业知识库的智能搜索和智能问答应用,颠覆了传统的开发模式,得到了广泛的关注。

Milvus 已经支持 Amazon Sagemaker、PyTorch、HuggingFace、LlamaIndex、LangChain 等业界主流的 AI 模型和框架,赶快使用 Milvus 开始您的创新之旅吧。

九、参考资料

Amazon EKS 用户指南:https://docs.aws.amazon.com/eks/latest/userguide/getting-star...

Milvus 官方网站:https://milvus.io/?trk=cndc-detail

eksctl 官方网站:https://eksctl.io/?trk=cndc-detail

本篇作者

吴万涛

亚马逊云科技解决方案架构师,负责亚马逊云科技云上解决方案架构设计和咨询,十几年 IT 行业从业经历,在网络、应用架构、容器等领域有丰富的经验。

朱伟达

Zilliz 高级工程师,DevOps & Infrastructure 团队负责人,负责 DevOps、云原生、Kubernetes 等相关的技术工作。milvus-helm、milvus-operator 等项目开发与维护者。

白雪尧

亚马逊云科技解决方案架构师,毕业于瑞典皇家理工学院,曾任职于 SAP,微软的开发、技术支持部门。对现代化应用架构,数据分析有丰富经验。对 HPC/半导体设计行业有行业经验。

文章来源:
https://dev.amazoncloud.cn/column/article/646da65d99ab8c6709d14a39?sc_medium=regulartraffic&sc_campaign=crossplatform&sc_channel=CSDN 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/194017.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

入门后端开发得学什么?这份超详细的后端开发学习路线图值得推荐!

后端开发, 无疑是一个极为关键的领域&#xff0c;涉及到我们每日互联网生活的每个细节。每当你在网上浏览、搜索或进行购物等活动时&#xff0c;背后都有大量的后端技术作为支撑。而随着技术的日益进步&#xff0c;人们对于高效、稳定和安全的网络服务的需求也越来越高。 另一…

Docker-minio部署

1.创建目录 创建文件目录&#xff0c;用来存放配置和上传文件目录 &#xff08;1&#xff09;Minio 外部挂载的配置文件(/mydata/minio/config) &#xff08;2&#xff09;存储上传文件的目录(/mydata/minio/data) mkdir -p /home/minio/config mkdir -p /home/minio/data2.拉…

解决计算机丢失msvcr71.dll问题,总结5种解决方法分享

由于各种原因&#xff0c;计算机在使用的过程中可能会出现一些问题&#xff0c;其中之一就是丢失msvcr71.dll文件。这个问题可能会导致计算机无法正常运行某些程序或功能&#xff0c;给我们的生活和工作带来困扰。那么&#xff0c;当我们遇到这个问题时&#xff0c;应该如何解决…

微星迫击炮b660m使用intel arc a750/770显卡功耗优化方法

bios 优化: 1,开机后持续点击“delete”键直到进入微星bios。 2,点击右上角选择我们熟悉的中文。 3,点击Settings--->高级---> pcie/Pci子系统设置 4,Native PCIE Enable : Enabled Native Aspm:允许

2—10岁女童羽绒服,黑色长款也太好看了吧

冬天怎么能没有一件暖呼呼的羽绒服呢&#xff1f; 黑色长款羽绒服也赞了吧 大长款连帽&#xff0c;防风保暖设计 时尚与美观度都兼具呢&#xff01;好穿又耐穿&#xff01;

【EI会议征稿】第三届区块链、信息技术与智慧金融国际学术会议 (ICBIS2024)

第三届区块链、信息技术与智慧金融国际学术会议 (ICBIS2024) The 3rd International Academic Conference on Blockchain, Information Technology and Smart Finance 第三届区块链、信息技术与智慧金融国际学术会议 (ICBIS2024) 将于2024年2月23-25日在马来西亚举行。本次会…

【计算机网络笔记】DHCP协议

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

关于400G光模块的常见问题解答

最近在后台收到了很多用户咨询关于400G光模块的信息&#xff0c;那400G光模块作为当下主流的光模块类型&#xff0c;有哪些问题是备受关注的呢&#xff1f;下面来看看小易的详细解答&#xff01; 1、什么是400G QSFP-DD光模块&#xff1f; 答&#xff1a;400G光模块是指传输速…

三、Eureka注册中心

目录 一、作用及调用方式 二、搭建eureka注册中心 三、注册user-service和order-service 四、新增实例 五、服务拉取 六、总结 一、作用及调用方式 在服务提供者启动时&#xff0c;它会向eureka注册中心提供自己的信息&#xff0c;并每30秒进行一次刷新eureka注册中心保存…

bat随手记

目录 bat批处理常用命令查询有哪些reg命令&#xff0c;帮助信息——reg /?查询注册表信息——reg query /?切换到批处理文件目录——cd /d "%~dp0"永久设置环境变量——setx命令设置注册表内容——/v名称&#xff0c;/t类型&#xff0c;/d数据%cd%和%~dp0的区别/f没…

数据库测试的认知和分类详解

现在的软件系统&#xff0c;尤其是业务应用系统&#xff0c;后台都连接着一个数据库。数据库中存储了大量的数据&#xff0c;数据库的设计是否合理和完善&#xff0c;SQL语句编写是否正确、高效&#xff0c;都直接影响了一个软件系统的功能正确性和性能表现。今天跟大家分享一些…

metinfo 6.0.0 任意文件读取漏洞复现

metinfo 6.0.0 任意文件读取漏洞复现 漏洞环境 环境为mrtinfo 6.0.0 漏洞存在的位置 通过代码审计发现在源代码的/app/system/include/module/old_thumb.class.php这个位置有着任意读取文件漏洞 漏洞点:http://127.0.0.1/metinfo_6.0.0//include/thumb.php 漏洞复现 访…

efcore反向共工程,单元测试

1.安装efcore需要的nuget <PackageReference Include"Microsoft.EntityFrameworkCore" Version"6.0.24" /> <PackageReference Include"Microsoft.EntityFrameworkCore.SqlServer" Version"6.0.24" /> <PackageRefere…

Docker-compose 下载安装测试完成

源文件-http://t.csdnimg.cn/7NxHchttp://t.csdnimg.cn/7NxHc 1 docker-compose说明 Docker Compose 是Docker的组装工具&#xff0c;用于创建和调试多个Docker容器&#xff0c;并在同一个Docker主机上运行它们。Docker Compose基于YAML文件&#xff0c;描述多个容器之间的相…

香港科技大学广州|机器人与自主系统学域博士招生宣讲会—电子科技大学专场!!!(暨全额奖学金政策)

在机器人和自主系统领域实现全球卓越—机器人与自主系统学域 硬核科研实验室&#xff0c;浓厚创新产学研氛围&#xff01; 教授亲临现场&#xff0c;面对面答疑解惑助攻申请&#xff01; 一经录取&#xff0c;享全额奖学金1.5万/月&#xff01; &#x1f559;时间&#xff1a;…

【从删库到跑路】MySQL数据库 | 全局锁 | 表级锁 | 行级锁

文章目录 &#x1f339;简述&#x1f384;全局锁⭐数据备份&#x1f388;设置全局锁&#x1f388;对表进行备份&#x1f388;释放锁 &#x1f384;表级锁&#x1f6f8;表锁⭐读锁⭐写锁 &#x1f6f8;元数据锁&#x1f6f8;意向锁⭐意向共享锁⭐意向排他锁 &#x1f384;行级锁…

有大量虾皮买家号想防关联该怎么做?

Shopee平台规定一个买家只能拥有一个买家号&#xff0c;如果一台电脑或者一个手机同时登录好几个买家号&#xff0c;那么很有可能就会关联封号的。那么有大量虾皮买家号想防关联该怎么做&#xff1f; 如果想要运用大量的shopee买家号来操作&#xff0c;那么需要使用有防指纹技术…

Navicat Premium 16,无限重置试用14天

打开注册表编辑器 红箭头所指方向每个系统判别不一样 如何判别呢&#xff1f;一个个点开看底下是不是info&#xff0c;如果是那么把info文件夹删掉就可以了。

PMP项目管理考试的知识点概述

人 - 重点强调与有效领导项目团队相关的技能和活动。考试内容主要涵盖敏捷实践管理&#xff0c;考题占比较大。 过程 - 加强项目管理的技术领域&#xff1b;主要涵盖《PMBOK第6版》&#xff0c;考试试题占比约为50%。《PMBOK第6版》考试内容大约有90道题。 业务环境 - 突出项…

7.jvm对象内存布局

目录 概述对象里的三个区对象头验证代码控制台输出分析 验证2代码控制台输出 实例数据对其填充 访问对象结束 概述 jvm对象内存布局详解。 相关文章在此总结如下&#xff1a; 文章地址jvm基本知识地址jvm类加载系统地址双亲委派模型与打破双亲委派地址运行时数据区地址运行时数…