单脉冲测角-和差比幅法

和差比幅法单脉冲测角

      • 单脉冲测角的类型
      • 阵列接收模型
      • 和差波束构造方法
      • 和差比幅测角仿真

单脉冲测角的类型

传统的单脉冲测向方法主要有3种,分别是半阵法、加权法和和差比幅法。其实这3种方法都需要形成和波束和差波束,只是波束形成的方法不同,进一步来说,就是和波束、差波束的权值计算的方法不同。有关半阵法的原理及仿真可以参考博文链接: 单脉冲测角-半阵法。在了解单脉冲测向之前,首先要知道普通波束形成,普通波束形成就是设计一组权值,使得对各个阵元接收到的信号进行加权求和之后,形成一种空间滤波,选择性的接收期望方向的信号而抑制其他方向的信号。在实际情况中,前端处理得到的波束指向角 φ 0 \varphi_0 φ0不一定等于 φ s \varphi_s φs,但真实角度一般出于波束的3dB带宽以内。因此我们就需要一种方法在已知确知波束指向角的情况下测量期望信号的真实方向。单脉冲测角就是用于解决该问题。通常情况下,单脉冲测角需要在阵列的输出端分别形成和波束和差波束,其中和波束要求在波束指向处形成主瓣增益,而差波束则要求在波束指向处形成零陷。然后利用单脉冲比即和差比估计出期望信号方向与波束指向间的插值 Δ φ \Delta_\varphi Δφ
半阵法和加权法最大的局限性在于,它们都需要依赖于阵列的特殊结构。半阵法要求阵列排布具有对称性,加权法只能用于规则阵列,这两种方法都不具有普适性,不同阵列的权向量的表达式形式可能会大相径庭。
下面介绍和差比幅法的原理。

阵列接收模型

在这里插入图片描述

图1. 均匀线性阵接收信号模型

对于均匀线阵,俯仰角 φ \varphi φ的定义域通常为 φ ∈ ( − 9 0 ∘ , 9 0 ∘ ) \varphi \in (-90^{\circ},90^{\circ}) φ(90,90)。设阵列参考点为 ο \omicron ο,即左起第一个阵元。由几何关系我们可以知道,第 m m m个阵元相对于参考点的波程差为 ( m − 1 ) d s i n φ (m-1)d\rm{sin}\varphi (m1)dsinφ,因此我们可以得到第 m m m个阵元相对于参考点的时延 τ m \tau_m τm
τ m = ( m − 1 ) d s i n φ c \tau_m=\frac{(m-1)d\rm{sin}\varphi}{c} τm=c(m1)dsinφ
利用上式,均匀线阵的导向矢量可以表示为:
a ( φ ) = [ 1 , e j 2 π d s i n φ λ , . . . , e j 2 π ( M − 1 ) d s i n φ λ ] T \bm{a}(\varphi)=[1,e^{j\frac{2\pi d\rm{sin}\varphi}{\lambda}},...,e^{j\frac{2\pi (M-1)d\rm{sin}\varphi}{\lambda}}]^{T} a(φ)=[1,ejλ2πdsinφ,...,ejλ2π(M1)dsinφ]T
在均匀线性阵中,要求相邻阵元间距 d ≤ λ / 2 d\leq \lambda/2 dλ/2,否则会造成相位混叠,进而影响单脉冲测角。
由导向矢量,可以得到来波方向为 φ \varphi φ的信号 s ( t ) s(t) s(t)的阵列输出为:
y = a ( φ ) s ( t ) y=\bm{a}(\varphi)s(t) y=a(φ)s(t)

和差波束构造方法

这里采用常见的均匀线性阵为例来解析和差比幅侧向的一般过程。如上图所示,首先考虑一个 M M M阵元的均匀线性阵,阵元间距为半波长 1 / 2 λ 1/2\lambda 1/2λ,阵列波束指向为 φ 0 \varphi_0 φ0。我们首先构造一个和波束,和波束要求波束指向处形成主瓣增益,因此我们取波束指向 φ 0 \varphi_0 φ0处的导向向量为和波束权,即
w Σ = a ( φ 0 ) w_{\Sigma}=a(\varphi_0) wΣ=a(φ0)
和波束得到的信息可以用于测距。差波束要求在波束指向处形成零陷,这里采用的方法是:首先以波束指向 φ 0 \varphi_0 φ0为中心,关于 φ 0 \varphi_0 φ0分别取两个角度 φ l \varphi_l φl φ r \varphi_r φr,这两个角度的选取也是有讲究的,不能够太大,一般情况下,我们选择和波束主瓣的3dB截止角度作为 φ l \varphi_l φl φ r \varphi_r φr的值。假设3dB主瓣宽度为 θ m b s \theta_{mbs} θmbs,则:
φ l = φ 0 − 1 2 θ m b s , φ r = φ 0 + 1 2 θ m b s \varphi_l=\varphi_0-\frac{1}{2}\theta_{mbs},\varphi_r=\varphi_0+\frac{1}{2}\theta_{mbs} φl=φ021θmbs,φr=φ0+21θmbs
3dB主瓣宽度为 θ m b s \theta_{mbs} θmbs的计算公式为:
θ m b s = = 50.7 λ N d c o s φ 0 ( ∘ ) \theta_{mbs}==\frac{50.7\lambda }{ Ndcos\varphi_0}(^\circ) θmbs==Ndcosφ050.7λ()
具体的计算过程可以参考博文波束形成中的主瓣宽度 。
差波束构造为两个波束的差:
Δ ( φ ) = ∣ a H ( φ l ) a ( φ ) ∣ − ∣ a H ( φ r ) a ( φ ) ∣ \Delta(\varphi)=\left| a^H(\varphi_l)a(\varphi) \right|-\left| a^H(\varphi_r)a(\varphi) \right| Δ(φ)= aH(φl)a(φ) aH(φr)a(φ)
同理,比幅法也需要将和波束处理为幅度值,即
Σ ( φ ) = ∣ w Σ H a ( φ ) ∣ \Sigma(\varphi)=\left| w^H_{\Sigma}a(\varphi)\right| Σ(φ)= wΣHa(φ)
因此,可以得到和差波束比幅法的单脉冲比MRC为:
M R C = Δ ( φ ) Σ ( φ ) = ∣ a H ( φ l ) a ( φ ) ∣ − ∣ a H ( φ r ) a ( φ ) ∣ ∣ w Σ H a ( φ ) ∣ MRC=\frac{\Delta(\varphi)}{\Sigma(\varphi)}=\frac{\left| a^H(\varphi_l)a(\varphi) \right|-\left| a^H(\varphi_r)a(\varphi) \right|}{\left| w^H_{\Sigma}a(\varphi)\right|} MRC=Σ(φ)Δ(φ)= wΣHa(φ) aH(φl)a(φ) aH(φr)a(φ)
比幅测向顾名思义,就是以差波束和和波束的幅度比作为单脉冲比,实际上利用了左右波束的对称性,而不局限于阵列本身几何结构的特殊性,因此可以用于共形阵。但是该方法容易受到波束特性的影响,比如阵列的主瓣过宽时,可能会导致测向结果较差。

和差比幅测角仿真

纸上得来终觉浅,绝知此事要躬行。光看懂还不行,自己动手做一些仿真,才能真正的掌握其原理。
考虑一个8阵元结构的均匀线性阵,阵元间距为半波长,波束指向为0°,可以计算得主波束宽度为 θ m b s = 12.68 ° \theta_{mbs}=12.68° θmbs=12.68°,我们暂且取 φ l = − 5 ° \varphi_l=-5° φl= φ r = 5 ° \varphi_r=5° φr=,左右两个波束的角度差可以小一点,后面的分析将会看到,这个角度越小,和差比和角度的线性度越高。
下图是绘制的和差波束
在这里插入图片描述

图2. 比幅法和差波束

可以看到,与半阵法类似,比幅法和波束在期望方向形成了主瓣增益,而差波束在期望方向形成零陷。下面我们绘制单脉冲比MRC曲线。
在这里插入图片描述

图3. 单脉冲比曲线

比幅法的单脉冲比MRC不存在一个显式子表达式,因此只能通过曲线拟合处斜率,然后在单脉冲测向系统种用于测向。在一些文献中看到有人说可以通过查表得方法,我个人觉得也是可行的,首先我们仿真出来大量的点,例如上图中,不同的角度对应不同的比值,取得点越多,角度分辨率越高,得到的表格也越大。实际测角的时候,获取和差波束下信号的幅度,然后计算两者的比值,拿到这个比值后去表格中查找。实际计算除的比值一定是一个浮点数,通过四舍五入的方法取一定的位数,找到表格中相同的值。曲线拟合的话,可以得到一条类似于 y = k x + b y=kx+b y=kx+b的一次函数,将和差比值代进去得到角度。
matlab仿真代码如下:

% 单脉冲测角-和差比幅法仿真
%  Author:huasir 2023.11.16 @Beijing
clear all;close all;clc;
N = 8; %阵元数
theta = (-90:0.1:90); %观测角度范围
theta0 = 0; %波形形成的方向
thetaL = -5; %用于构造差波束的波束1
thetaR = 5; %用于构造差波束的波束2
theta0 = theta0*pi/180; %弧度换算为角度
theta = theta*pi/180; %弧度换算为角度
thetaL = thetaL*pi/180; %弧度换算为角度
thetaR = thetaR*pi/180; %弧度换算为角度
d_lembda = 1/2; %阵元间距比波长,一般采用半波长
%% 构造和差波束
a = exp(j*2*pi*d_lembda*(0:N-1)'*sin(theta)); %导向矢量
wSigma = exp(j*2*pi*d_lembda*(0:N-1)'*sin(theta0)); %和波束权向量
wDeltaL = exp(j*2*pi*d_lembda*(0:N-1)'*sin(thetaL)); %用于构造差波束的波束1的权向量
wDeltaR = exp(j*2*pi*d_lembda*(0:N-1)'*sin(thetaR)); %用于构造差波束的波束2的权向量
ySigma = abs(wSigma'*a); %和波束
yDelta = abs(wDeltaL'*a)-abs(wDeltaR'*a); %差波束
figure;
plot(theta*180/pi,20*log10(ySigma/max(ySigma)),'linewidth',1); %绘制和波束
hold on;
plot(theta*180/pi,20*log10(yDelta/max(yDelta)),'linewidth',1); %绘制差波束
legend('和波束','差波束');
xlabel('方位角/°');ylabel('归一化功率方向图/dB');
axis tight;% axistight 使得图形框图靠近数据
grid on; %添加栅格线
ylim([-30, 0]); % 为了限制y值范围,使得图像显示的更加合理
title(sprintf('阵元数:%d,波束方向:%.0f°',N,theta0))%添加图题
%% 提取主瓣区域附近的和差波束,并计算单脉冲比
m1 = (-5-(-90))/0.1+1; %截取主瓣内部分区域对应的下标
m2 = (5-(-90))/0.1+1;  %截取主瓣内部分区域对应的下标
MRC = yDelta(m1:m2)./ySigma(m1:m2); %%计算单脉冲比
%% 绘制单脉冲比曲线
figure;
plot((-5:0.1:5),MRC,'linewidth',1);
set(gca,'XTick',[-5:1:5]); %设置要显示的坐标轴的刻度
xlabel('角度(°)');ylabel('和差比幅');
axis tight;% axistight 使得图形框图靠近数据
grid on; %添加栅格线
title('和差波束图');

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/194162.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

109. 有序链表转化为二叉搜索树

题目 题解 分治。 class Solution:def getMedian(self, left: ListNode, right: ListNode) -> ListNode:找到链表的中间节点slow fast leftwhile fast ! right and fast.next ! right:slow slow.nextfast fast.next.nextreturn slowdef buildTree(self, left: ListNod…

基于python+django的美食餐厅点餐订餐网站

运行环境 开发语言:Python python框架:django 软件版本:python3.7 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:PyCharm/vscode 前端框架:vue.js 项目介绍 本论文主要论述了如何使用python语言开发…

【NLP】理解 Llama2:KV 缓存、分组查询注意力、旋转嵌入等

LLaMA 2.0是 Meta AI 的开创性作品,作为首批高性能开源预训练语言模型之一闯入了 AI 场景。值得注意的是,LLaMA-13B 的性能优于巨大的 GPT-3(175B),尽管其尺寸只是其一小部分。您无疑听说过 LLaMA 令人印象深刻的性能,但您是否想知…

hadoop 大数据环境配置 ssh免密登录 centos配置免密登录 hadoop(四)

1. 找到.ssh文件夹 cd ~ # 在.ssh文件夹下生成 # cd .ssh 2. 生成私钥公钥命令: ssh-keygen -t rsa3. 发送到需要免密机器: # hadoop23 是我做了配置。在host配置得机器ip和名称得映射 ssh-copy-id hadoop23 4. 成功

微服务nacos实战入门

注册中心 在微服务架构中,注册中心是最核心的基础服务之一 主要涉及到三大角色: 服务提供者 ---生产者 服务消费者 服务发现与注册 它们之间的关系大致如下: 1.各个微服务在启动时,将自己的网络地址等信息注册到注册中心&#x…

leetcode:链表的中间结点

1.题目描述 题目链接:876. 链表的中间结点 - 力扣(LeetCode) 我们先看题目描述: 2.解题思路 我们用画图用快慢指针来解决这个问题 定义一个快指针fast,一个慢指针slow 快指针一次走两个结点,慢指针一次…

ceph 14.2.10 aarch64 非集群内 客户端 挂载块设备

集群上的机器测试 706 ceph pool create block-pool 64 64 707 ceph osd pool create block-pool 64 64 708 ceph osd pool application enable block-pool rbd 709 rbd create vdisk1 --size 4G --pool block-pool --image-format 2 --image-feature layering 7…

你知道如何科学的学习吗?-关于个人成长的思考

背景 最近在翻看自己工作后的笔记,从有道云笔记到印象笔记,到本地笔记,到自己使用github搭建的博客,到语雀笔记,使用了不同的平台工具;零零总总记录了许多学习笔记、个人成长笔记、职业规划等内容。现在看…

4. 【自动驾驶与机器人中的SLAM技术】点云中的拟合问题和K近邻

目录 1.在三维体素中定义 NEARBY14,实现 14 格最近邻的查找。2.推导arg max||Ad||22的解为ATA的最大特征向量或者奇异向量。3. 将本节的最近邻算法与一些常见的近似最近邻算法进行对比,比如nanoflann,给出精度指标和时间效率指标。4. 也欢迎大…

【性能】如何计算 Web 页面的 FP 指标

什么是 FP 指标 FP (First Paint) 为首次渲染的时间点,在性能统计指标中,从用户开始访问 Web 页面的时间点到 FP 的时间点这段时间可以被视为 白屏时间,也就是说在用户访问 Web 网页的过程中,FP 时间点之前,用户看到的…

深度学习_13_YOLO_图片切片及维度复原

需求: 在对获取的图片进行识别的时候,如果想减少不必要因素的干扰,将图片切割只对有更多特征信息的部分带入模型识别,而剩余有较多干扰因素的部分舍弃,这就是图片切割的目的,但是又由于模型对图片的维度有较…

lxml基本使用

lxml是python的一个解析库,支持HTML和XML的解析,支持XPath解析方式,而且解析效率非常高 XPath,全称XML Path Language,即XML路径语言,它是一门在XML文档中查找信息的语言,它最初是用来搜寻XML文…

线程的面试八股

Callable接口 Callable是一个interface,相当于给线程封装了一个返回值,方便程序猿借助多线程的方式计算结果. 代码示例: 使用 Callable 版本,创建线程计算 1 2 3 ... 1000, 1. 创建一个匿名内部类, 实现 Callable 接口. Callable 带有泛型参数. 泛型参数表示返回值的类型…

多标签页文件管理器 - Win系统

多标签页文件管理器 - Win系统 前言My Files-X Free360文件夹升级Win11 前言 Win10系统自带的文件管理器不支持多标签页功能,本文推荐几款多标签页文件管理器,可以在一个文件管理器窗口中打开多个标签页。 My Files-X Free 此文件管理器支持多标签页&…

一文解码语言模型:语言模型的原理、实战与评估

在本文中,我们深入探讨了语言模型的内部工作机制,从基础模型到大规模的变种,并分析了各种评价指标的优缺点。文章通过代码示例、算法细节和最新研究,提供了一份全面而深入的视角,旨在帮助读者更准确地理解和评估语言模…

unity shaderGraph实例-扫描效果

文章目录 效果展示整体结构各区域内容区域1区域2区域3区域4区域5区域6GraphSetttings注意事项使用方法 效果展示 整体结构 各区域内容 区域1 用场景深度减去顶点的View空间的视野深度(Z值),这里Z值需要乘-1是因为从相机看到的物体顶点的视野…

sqlmap requires ‘python-pymysql‘ third-party library

使用sqlmap进行udf提权报错: [14:06:04] [CRITICAL] sqlmap requires python-pymysql third-party library in order to directly connect to the DBMS MySQL. You can download it from https://github.com/PyMySQL/PyMySQL. Alternative is to use a package pyt…

Figma语言设置教程:简易切换至中文,提高操作便捷性!

Figma是世界领先的在线协作UI设计工具。它摆脱了Sketch等传统设计软件对设备的依赖,使设计师可以随时随地使用任何设备打开网页浏览器,轻松实现跨平台、跨时空的设计合作。那么,Figma如何改变中文,以提高国内设计师的使用体验呢&a…

【C++】【Opencv】cv::GaussianBlur、cv::filter2D()函数详解和示例

本文通过函数详解和运行示例对cv::GaussianBlur和cv::filter2D()两个函数进行解读,最后综合了两个函数的关系和区别,以帮助大家理解和使用。 目录 cv::GaussianBlur()函数详解运行示例 filter2D()函数详解运行示例 总结两个函数联…

DP4306F—Sub-1G无线收发通信芯片

DP4306F是一款高性能低功耗的单片集成收发机,工作频率可覆盖200MHz~1000MHz,集成M0核MCU,支持230 / 408 / 433 / 470 / 868 / 915频段。该芯片集成了射频接收器、射频发射器、频 率综合器、GFSK调制器、GFSK解调器等功能模块。通过SPI接口可以…