时间序列预测实战(十五)PyTorch实现GRU模型长期预测并可视化结果

往期回顾:时间序列预测专栏——包含上百种时间序列模型带你从入门到精通时间序列预测

一、本文介绍

本文讲解的实战内容是GRU(门控循环单元),本文的实战内容通过时间序列领域最经典的数据集——电力负荷数据集为例,深入的了解GRU的基本原理和框架,GRU是时间序列领域最常见的Cell之一,其相对于LSTM需要的参数量更少结构也更加简单,经常用于复杂的模型的过度单元,本文的讲解内容包括详细的代码讲解,带你一行一行的理解整个项目的流程,从而对整个项目有一个深入的了解,如果你是时间序列领域的新人,这篇文章可以带你入门时间序列领域并对时间序列的流程有一个详细的了解。

预测类型->单元预测、多元预测、长期预测

代码地址->文末提供复制粘贴即可运行的代码块

二、框架原理介绍

1.GRU的基本原理

GRU(门控循环单元)是一种循环神经网络(RNN)的变体,主要用于处理序列数据,它的基本原理可以概括如下:

  1. 门控机制:GRU的核心是门控机制,包括更新门(update gate)和重置门(reset gate)。这些门控制着信息的流动,即决定哪些信息应该被保留,哪些应该被遗忘。

  2. 更新门:更新门帮助模型决定过去的信息有多少需要保留到当前状态。它是通过当前输入和前一个隐状态计算得出的,用于调节隐状态的更新程度。

  3. 重置门:重置门决定了多少过去的信息需要被忘记。它同样依赖于当前输入和前一个隐状态的信息。当重置门接近0时,模型会“忘记”过去的隐状态,只依赖于当前输入。

  4. 当前隐状态的计算:利用更新门和重置门的输出,结合前一隐状态和当前输入,GRU计算出当前的隐状态。这个隐状态包含了序列到目前为止的重要信息。

  5. 输出:GRU的最终输出通常是在序列的每个时间步上产生的,或者在序列的最后一个时间步产生,取决于具体的应用场景。

总结:GRU相较于传统的RNN,其优势在于能够更有效地处理长序列数据,减轻了梯度消失的问题。同时,它通常比LSTM(长短期记忆网络)更简单,因为它有更少的参数。

1.1GRU的基本框架

​​

上面的图片为一个GRU的基本结构图,解释如下->

  • 更新门(z) 在决定是否用新的隐藏状态更新当前隐藏状态时扮演重要角色。
  • 重置门(r) 决定是否忽略之前的隐藏状态。

这些部分是GRU的核心组成,它们共同决定了网络如何在序列数据中传递和更新信息,这对于时间序列分析至关重要。

总结:这个 GRU真的是结构太简单了,没什么好讲解的,如果你是时间序列预测的新手这篇文章能够帮助你很好的入门时间序列并且能够对时间序列的整体流程有一个完整的了解如果你是大神这边文章可能并不能给你带来太多的帮助。

三、数据集介绍

我们本文用到的数据集是官方的ETTh1.csv ,该数据集是一个用于时间序列预测的电力负荷数据集,它是 ETTh 数据集系列中的一个。ETTh 数据集系列通常用于测试和评估时间序列预测模型。以下是 ETTh1.csv 数据集的一些内容:

数据内容:该数据集通常包含有关电力系统的多种变量,如电力负荷、价格、天气情况等。这些变量可以用于预测未来的电力需求或价格。

时间范围和分辨率:数据通常按小时或天记录,涵盖了数月或数年的时间跨度。具体的时间范围和分辨率可能会根据数据集的版本而异。 

以下是该数据集的部分截图->

​​

四、项目的全部代码

import time
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from matplotlib import pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from torch.utils.data import DataLoader
import torch
from torch.utils.data import Dataset# 随机数种子
np.random.seed(0)class TimeSeriesDataset(Dataset):def __init__(self, sequences):self.sequences = sequencesdef __len__(self):return len(self.sequences)def __getitem__(self, index):sequence, label = self.sequences[index]return torch.Tensor(sequence), torch.Tensor(label)def calculate_mae(y_true, y_pred):# 平均绝对误差mae = np.mean(np.abs(y_true - y_pred))return mae"""
数据定义部分
"""
true_data = pd.read_csv('ETTh1.csv')  # 填你自己的数据地址,自动选取你最后一列数据为特征列target = 'OT'  # 添加你想要预测的特征列
test_size = 0.15  # 训练集和测试集的尺寸划分
train_size = 0.85  # 训练集和测试集的尺寸划分
pre_len = 4  # 预测未来数据的长度
train_window = 32  # 观测窗口# 这里加一些数据的预处理, 最后需要的格式是pd.series
true_data = np.array(true_data[target])# 定义标准化优化器
scaler_train = MinMaxScaler(feature_range=(0, 1))
scaler_test = MinMaxScaler(feature_range=(0, 1))# 训练集和测试集划分
train_data = true_data[:int(train_size * len(true_data))]
test_data = true_data[-int(test_size * len(true_data)):]
print("训练集尺寸:", len(train_data))
print("测试集尺寸:", len(test_data))# 进行标准化处理
train_data_normalized = scaler_train.fit_transform(train_data.reshape(-1, 1))
test_data_normalized = scaler_test.fit_transform(test_data.reshape(-1, 1))# 转化为深度学习模型需要的类型Tensor
train_data_normalized = torch.FloatTensor(train_data_normalized)
test_data_normalized = torch.FloatTensor(test_data_normalized)def create_inout_sequences(input_data, tw, pre_len):# 创建时间序列数据专用的数据分割器inout_seq = []L = len(input_data)for i in range(L - tw):train_seq = input_data[i:i + tw]if (i + tw + 4) > len(input_data):breaktrain_label = input_data[i + tw:i + tw + pre_len]inout_seq.append((train_seq, train_label))return inout_seq# 定义训练器的的输入
train_inout_seq = create_inout_sequences(train_data_normalized, train_window, pre_len)
test_inout_seq = create_inout_sequences(test_data_normalized, train_window, pre_len)# 创建数据集
train_dataset = TimeSeriesDataset(train_inout_seq)
test_dataset = TimeSeriesDataset(test_inout_seq)# 创建 DataLoader
batch_size = 32  # 你可以根据需要调整批量大小
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=True)class GRU(nn.Module):def __init__(self, input_dim=1, hidden_dim=32, num_layers=1, output_dim=1, pre_len= 4):super(GRU, self).__init__()self.pre_len = pre_lenself.num_layers = num_layersself.hidden_dim = hidden_dim# 替换 LSTM 为 GRUself.gru = nn.GRU(input_dim, hidden_dim,num_layers=num_layers, batch_first=True)self.fc = nn.Linear(hidden_dim, output_dim)self.relu = nn.ReLU()self.dropout = nn.Dropout(0.1)def forward(self, x):h0_gru = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(x.device)out, _ = self.gru(x, h0_gru)out = self.dropout(out)# 取最后 pre_len 时间步的输出out = out[:, -self.pre_len:, :]out = self.fc(out)out = self.relu(out)return outlstm_model = GRU(input_dim=1, output_dim=1, num_layers=2, hidden_dim=train_window, pre_len=pre_len)
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(lstm_model.parameters(), lr=0.005)
epochs = 20
Train = True  # 训练还是预测if Train:losss = []lstm_model.train()  # 训练模式for i in range(epochs):start_time = time.time()  # 计算起始时间for seq, labels in train_loader:lstm_model.train()optimizer.zero_grad()y_pred = lstm_model(seq)single_loss = loss_function(y_pred, labels)single_loss.backward()optimizer.step()print(f'epoch: {i:3} loss: {single_loss.item():10.8f}')losss.append(single_loss.detach().numpy())torch.save(lstm_model.state_dict(), 'save_model.pth')print(f"模型已保存,用时:{(time.time() - start_time) / 60:.4f} min")else:# 加载模型进行预测lstm_model.load_state_dict(torch.load('save_model.pth'))lstm_model.eval()  # 评估模式results = []reals = []losss = []for seq, labels in test_loader:pred = lstm_model(seq)mae = calculate_mae(pred.detach().numpy(), np.array(labels))  # MAE误差计算绝对值(预测值  - 真实值)losss.append(mae)for j in range(batch_size):for i in range(pre_len):reals.append(labels[j][i][0].detach().numpy())results.append(pred[j][i][0].detach().numpy())reals = scaler_test.inverse_transform(np.array(reals).reshape(1, -1))[0]results = scaler_test.inverse_transform(np.array(results).reshape(1, -1))[0]print("模型预测结果:", results)print("预测误差MAE:", losss)plt.figure()plt.style.use('ggplot')# 创建折线图plt.plot(reals, label='real', color='blue')  # 实际值plt.plot(results, label='forecast', color='red', linestyle='--')  # 预测值# 增强视觉效果plt.grid(True)plt.title('real vs forecast')plt.xlabel('time')plt.ylabel('value')plt.legend()plt.savefig('test——results.png')

五、模型代码的详细讲解

整个代码的流程我会从模型的入口参数定义开始进行讲解, 然后顺序讲解在直到模型的结束。

true_data = pd.read_csv('ETTh1.csv')  # 填你自己的数据地址,自动选取你最后一列数据为特征列

这一步就是读取你的数据了~不给大家讲了主要是csv的格式数据。 

target = 'OT'  # 添加你想要预测的特征列
test_size = 0.15  # 训练集和测试集的尺寸划分
train_size = 0.85  # 训练集和测试集的尺寸划分
pre_len = 4  # 预测未来数据的长度
train_window = 32  # 观测窗口

这一步就是参数定义的部分,讲解我已经再代码里标注了出来,需要说说的就是,pre_len和train_window这两个参数,

其中pre_len就是你预测未来数据的长度,假设你有一百条数据你想知道未来多少条数据的信息就填多少。 

train_window是数据的观测窗口,就是你利用多少条数据去预测你定义的pre_len长度。

# 这里加一些数据的预处理, 最后需要的格式是pd.series
true_data = np.array(true_data[target])

这是提取出特征列,根据前面你定义的target。 

# 定义标准化优化器
scaler_train = MinMaxScaler(feature_range=(0, 1))
scaler_test = MinMaxScaler(feature_range=(0, 1))# 训练集和测试集划分
train_data = true_data[:int(train_size * len(true_data))]
test_data = true_data[-int(test_size * len(true_data)):]
print("训练集尺寸:", len(train_data))
print("测试集尺寸:", len(test_data))# 进行标准化处理
train_data_normalized = scaler_train.fit_transform(train_data.reshape(-1, 1))
test_data_normalized = scaler_test.fit_transform(test_data.reshape(-1, 1))# 转化为深度学习模型需要的类型Tensor
train_data_normalized = torch.FloatTensor(train_data_normalized)
test_data_normalized = torch.FloatTensor(test_data_normalized)

这部分是定义优化器,我们的深度学习模型输入一般都是-1到1(虽然这不是必须的,但是如果你不进行标准化处理效果真是天差地别),然后是测试集和训练集的划分,和根据数据进行标准化处理的操作,并且将数据转化为tensor的格式(tensor是我们深度学习特有的数据格式)。

# 定义训练器的的输入
train_inout_seq = create_inout_sequences(train_data_normalized, train_window, pre_len)
test_inout_seq = create_inout_sequences(test_data_normalized, train_window, pre_len)

这一部分是重点!!!!!

时间序列的数据和其他领域的不一样他需要滑窗的数据形式,假设我有100条数据,前面定义的滑窗大小是32预测未来数据的长度是4那么他就会用32和4去滑动数据,

所以我们的到数据是多少呢就是100 - 32 - 4 =54条数据(每条数据包含32条观测数据和4个标签数据),这里必须理解大家这是时间序列的基础,他是不能够直接用Dataloader进行数据加载的。

# 创建数据集
train_dataset = TimeSeriesDataset(train_inout_seq)
test_dataset = TimeSeriesDataset(test_inout_seq)# 创建 DataLoader
batch_size = 32  # 你可以根据需要调整批量大小
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=True)

这部分是创建数据集和Dataloader数据加载器,利用Dataloader的好处是可以避免内存爆炸,但是我们时间序列的数据一般都不大不会有这种情况。

class GRU(nn.Module):def __init__(self, input_dim=1, hidden_dim=32, num_layers=1, output_dim=1, pre_len= 4):super(GRU, self).__init__()self.pre_len = pre_lenself.num_layers = num_layersself.hidden_dim = hidden_dim# 替换 LSTM 为 GRUself.gru = nn.GRU(input_dim, hidden_dim,num_layers=num_layers, batch_first=True)self.fc = nn.Linear(hidden_dim, output_dim)self.relu = nn.ReLU()self.dropout = nn.Dropout(0.1)def forward(self, x):h0_gru = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(x.device)out, _ = self.gru(x, h0_gru)out = self.dropout(out)# 取最后 pre_len 时间步的输出out = out[:, -self.pre_len:, :]out = self.fc(out)out = self.relu(out)return out

这是模型的内部,就是一个简单的gru模型,我来说一下其中的通道数情况,我们输入的X是三维的分别是[batch_size, train_window, target数量], 这是我们输入x的情况,经过gru进行处理我们添加了一个dropout避免过拟合,然后取出了你想要预测长度的步长数据,最后经过全连接层进行一个结果输出,大家有兴趣建议还是debug一下我这么讲你是不能理解的,最好还是实际动手debug看一下其中的通道数变化情况。

lstm_model = GRU(input_dim=1, output_dim=1, num_layers=2, hidden_dim=train_window, pre_len=pre_len)
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(lstm_model.parameters(), lr=0.005)
epochs = 20
Train = True  # 训练还是预测

这里实例化了我们的模型,定义了MSE损失函数,和优化器Adam和训练轮次,其中的Train是来判断是否进行训练。

if Train:losss = []lstm_model.train()  # 训练模式for i in range(epochs):start_time = time.time()  # 计算起始时间for seq, labels in train_loader:lstm_model.train()optimizer.zero_grad()y_pred = lstm_model(seq)single_loss = loss_function(y_pred, labels)single_loss.backward()optimizer.step()print(f'epoch: {i:3} loss: {single_loss.item():10.8f}')losss.append(single_loss.detach().numpy())torch.save(lstm_model.state_dict(), 'save_model.pth')print(f"模型已保存,用时:{(time.time() - start_time) / 60:.4f} min")

 如果Train为True则开始训练执行上面的代码,这是一个标准pytorch框架下的训练过程就不给大家 说了,如果不能理解的话大家可以去补补基础,或者评论区问我我在给大家讲讲。

else:# 加载模型进行预测lstm_model.load_state_dict(torch.load('save_model.pth'))lstm_model.eval()  # 评估模式results = []reals = []losss = []for seq, labels in test_loader:pred = lstm_model(seq)mae = calculate_mae(pred.detach().numpy(), np.array(labels))  # MAE误差计算绝对值(预测值  - 真实值)losss.append(mae)for j in range(batch_size):for i in range(pre_len):reals.append(labels[j][i][0].detach().numpy())results.append(pred[j][i][0].detach().numpy())

如果Train为False时候则开始进行评估模式我们利用test的数据集进行测试评估训练模型,

 reals = scaler_test.inverse_transform(np.array(reals).reshape(1, -1))[0]results = scaler_test.inverse_transform(np.array(results).reshape(1, -1))[0]print("模型预测结果:", results)print("预测误差MAE:", losss)plt.figure()plt.style.use('ggplot')# 创建折线图plt.plot(reals, label='real', color='blue')  # 实际值plt.plot(results, label='forecast', color='red', linestyle='--')  # 预测值# 增强视觉效果plt.grid(True)plt.title('real vs forecast')plt.xlabel('time')plt.ylabel('value')plt.legend()plt.savefig('test——results.png')

 这一部分是我们预测值和真实值之间的对比,来确定我们预测的好坏,后面的结果分析会有展示。

六、模型的训练和预测

上面我把大多数的代码都讲了一便大家应该对整个过程有一个大致的了解下面来大家进行训练看看模型的结果。

6.1模型的训练

我们将我前面提供的全部代码块复制粘贴到随便一个.py的文件内然后将数据集和特征数填写进去,就可以开始训练模型了。

训练的过程中控制台会输出训练结果和损失,可以看到刚开始我们的损失非常的大,到训练结束之后我们的损失如下会变的非常小。

​​

 可以看到我们的模型损失只有0.010.5901一个批次下可以说模型的拟合效果是非常的好,我们下面来看一下模型的损失图像,可以看到我们模型拟合速度比较一般在20个epoch左右在完全拟合。

6.2模型的评估

经过训练之后我们可以开始进行模型的评估了。

6.2.1结果展示

下面的图片是模型的评估结果,其中评估数据大概有800条左右,评估了大概八百条数据,结果只能说太一般了。

6.2.2结果分析

这个模型结果只能说在意料之中,大家看其中的图像可以看到明显的数据滞后性,这一问题我在前面利用过ARIMA-LSTM进行解决进行了完美的解决,大家有兴趣可以去回去评估一下,这单个GRU模型结果在这样只能说是正常的情况。

全文总结

到此本文已经全部讲解完成了,希望能够帮助到大家,在这里也给大家推荐一些我其它的博客的时间序列实战案例讲解,其中有数据分析的讲解就是我前面提到的如何设置参数的分析博客,最后希望大家订阅我的专栏,本专栏均分文章均分98,并且免费阅读。

概念理解 

15种时间序列预测方法总结(包含多种方法代码实现)

数据分析

时间序列预测中的数据分析->周期性、相关性、滞后性、趋势性、离群值等特性的分析方法

机器学习——难度等级(⭐⭐)

时间序列预测实战(四)(Xgboost)(Python)(机器学习)图解机制原理实现时间序列预测和分类(附一键运行代码资源下载和代码讲解)

深度学习——难度等级(⭐⭐⭐⭐)

时间序列预测实战(五)基于Bi-LSTM横向搭配LSTM进行回归问题解决

时间序列预测实战(七)(TPA-LSTM)结合TPA注意力机制的LSTM实现多元预测

时间序列预测实战(三)(LSTM)(Python)(深度学习)时间序列预测(包括运行代码以及代码讲解)

时间序列预测实战(十一)用SCINet实现滚动预测功能(附代码+数据集+原理介绍)

时间序列预测实战(十二)DLinear模型实现滚动长期预测并可视化预测结果

Transformer——难度等级(⭐⭐⭐⭐)

时间序列预测模型实战案例(八)(Informer)个人数据集、详细参数、代码实战讲解

时间序列预测模型实战案例(一)深度学习华为MTS-Mixers模型

时间序列预测实战(十三)定制化数据集FNet模型实现滚动长期预测并可视化结果

时间序列预测实战(十四)Transformer模型实现长期预测并可视化结果(附代码+数据集+原理介绍)

个人创新模型——难度等级(⭐⭐⭐⭐⭐)

时间序列预测实战(十)(CNN-GRU-LSTM)通过堆叠CNN、GRU、LSTM实现多元预测和单元预测

传统的时间序列预测模型(⭐⭐)

时间序列预测实战(二)(Holt-Winter)(Python)结合K-折交叉验证进行时间序列预测实现企业级预测精度(包括运行代码以及代码讲解)

时间序列预测实战(六)深入理解ARIMA包括差分和相关性分析

融合模型——难度等级(⭐⭐⭐)

时间序列预测实战(九)PyTorch实现融合移动平均和LSTM-ARIMA进行长期预测

​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/194357.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Framework 简介与起源

Spring是用于企业Java应用程序开发的最流行的应用程序开发框架。全球数百万开发人员使用Spring Framework创建高性能、易于测试和可重用的代码。 Spring Framework是一个开源的Java平台。它最初由Rod Johnson编写,并于2003年6月在Apache 2.0许可下首次发布。 Spri…

使用 Java 枚举和自定义数据类型

介绍 在 Java 编程领域,理解并有效利用枚举和自定义数据类型对于编写健壮、可维护且高效的代码至关重要。这篇文章旨在深入研究 Java 枚举和自定义数据类型的概念,提供见解和示例,以增强您的编码技能和知识。 理解 Java 中的枚举 枚举是枚…

C语言对10个数进行排序,使用快速排序算法

完整代码&#xff1a; // 对10个数进行排序&#xff0c;使用快速排序算法 #include<stdio.h>//用第一个元素将待排序序列划分成左右两个部分&#xff0c;返回排序后low的位置&#xff0c;即枢轴的位置 int partition(int arr[],int low,int high){//让待排序序列中的第一…

Android修行手册-Gson中不用实体类生成JsonObject或JsonArray

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列点击跳转>ChatGPT和AIGC &#x1f449;关于作者 专…

9.程序的机器级代码表示,CISC和RISC

目录 一. x86汇遍语言基础&#xff08;Intel格式&#xff09; 二. AT&T格式汇编语言 三. 程序的机器级代码表示 &#xff08;1&#xff09;选择语句 &#xff08;2&#xff09;循环语句 &#xff08;3&#xff09;函数调用 1.函数调用命令 2.栈帧及其访问 3.栈帧的…

狂神说笔记 快速入门Nginx

公司产品出现瓶颈&#xff1f; 我们公司项目刚刚上线的时候&#xff0c;并发量小&#xff0c;用户使用的少&#xff0c;所以在低并发的情况下&#xff0c;一个jar包启动应用就够了&#xff0c;然后内部tomcat返回内容给用户。 但是慢慢的&#xff0c;使用我们平台的用户越来…

逻辑回归-癌症病预测与不均衡样本评估

1.注册相关库(在命令行输入&#xff09; pip install scikit-learn pip install pandas pip install numpy 2.导入相关库 import pandas as pd import numpy as np from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split…

黑马点评回顾 redis实现共享session

文章目录 传统session缺点整体访问流程代码实现生成验证码登录 问题具体思路 传统session缺点 传统单体项目一般是把session存入tomcat&#xff0c;但是每个tomcat中都有一份属于自己的session,假设用户第一次访问第一台tomcat&#xff0c;并且把自己的信息存放到第一台服务器…

场景图形管理-多视图与相机(3)

在OSG中多视图的管理是通过osgViewer::CompositeViewer类来实现的。该类负责多个视图的管理及同步工作&#xff0c;继承自osgViewer;:ViewerBase类&#xff0c;继承关系图如图8-13所示 图8-13 osgViewer::CompositeViewer 的继承关系图 在前面已经讲到&#xff0c;osgViewer:Vi…

ubuntu中使用 vscode 连接docker开发环境

文章目录 ubuntu中使用 vscode 连接docker开发环境步骤一&#xff1a;安装 Remote Development 插件步骤二&#xff1a;连接远程环境步骤三&#xff1a;开发 问题解决参考连接 ubuntu中使用 vscode 连接docker开发环境 Remote Development 是一个 Visual Studio Code 插件&…

【MySQL】表的增删改查(基础)

一、新增&#xff08;Create&#xff09; 先创建一张表&#xff1a; create table student (id int,sn int comment 学号,name varchar(20),email varchar(20));1.1 单行数据 全列插入 插入两条记录&#xff0c;value_list 数量必须和定义表的列的数量及顺序一致 insert i…

【C++面向对象】14. 命名空间

文章目录 【 1. 命名空间的定义 】【 2. using 指令 】2.1 using 指定命名空间的全部2.2 using 指定命名空间的部分 【 3. 不连续的命名空间 】【 4. 嵌套的命名空间 】 问题的背景&#xff1a;假设这样一种情况&#xff0c;当一个班上有两个名叫 Zara 的学生时&#xff0c;为了…

基于JavaWeb+SpringBoot+Vue医疗器械商城微信小程序系统的设计和实现

基于JavaWebSpringBootVue医疗器械商城微信小程序系统的设计和实现 源码获取入口前言主要技术系统设计功能截图Lun文目录订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 前言 摘 要 目前医疗器械行业作为医药行业的一个分支&#xff0c;发展十分迅速。…

Ubuntu20.04安装搜狗输入法

目录 1. sogoupinyin安装1.1 安装 fcitx1.2 下载搜狗官方安装包1.3 安装依赖&#xff08;这步很关键&#xff0c;否则安装完成后&#xff0c;无法输入中文&#xff09;1.4 安装刚才下载的搜狗输入法1.5 切换 fcitx1.6 重启电脑1.7 右上角点击Configure&#xff0c;(因为我安装好…

1116中信笔试

1116中信笔试 int, Integer的区别&#xff0c;相等如何判断结果Java的异常处理数据库的事务操作Redis的基本数据类型问了HashMap底层实现TCP协议MySQL的隔离级别创建线程的几种方式双亲委派机制 &#xff0c;它的优点linux命令&#xff08;查看线程&#xff09; java和数据库ha…

注册表单mvc

jsp给我们的ControllerServlet 1在哪看到我们的数据呢 2什么时候用了session,有什么用 register.jsp 获取表单的name,email formBean.name是怎么定义的 3为什么就可以formbean访问 要使用的jsp对象都在servlet里面用setAttribute定义的 request.getSession().setAttribute…

YashanDB个人版正式开放下载!参与首批体验官活动赢好礼!

好消息&#xff01;国产数据库YashanDB个人版已正式向所有用户和开发者全面开放下载&#xff0c;该版本已在官网同步上线&#xff0c;欢迎大家前往官网下载体验&#xff01; 与此同时&#xff0c;YashanDB联合墨天轮技术社区启动首批「产品体验官」尝鲜活动&#xff0c;欢迎广…

数据分析 - 离散概率分布的运用

期望公式 期望的方差 期望的标准差

安全区域边界(设备和技术注解)

网络安全等级保护相关标准参考《GB/T 22239-2019 网络安全等级保护基本要求》和《GB/T 28448-2019 网络安全等级保护测评要求》 密码应用安全性相关标准参考《GB/T 39786-2021 信息系统密码应用基本要求》和《GM/T 0115-2021 信息系统密码应用测评要求》 1边界防护 1.1应保证跨…

第六届浙江省大学生网络与信息安全竞赛 2023年 初赛/决赛 WEB方向 Writeup

-------------------【初赛】------------------- easy php 简单反序列化 __debuginfo()魔术方法打印所需调试信息&#xff0c;反序列化时候执行&#xff01; 链子如下&#xff1a; BBB::__debuginfo()->CCC::__toString()->AAA::__call()EXP&#xff1a; <?php…