【论文解读】GPT Understands, Too

一.论文

1.1 P-tuning

区别于之前的工作,这篇工作认为promote可以在句子中的任意位置起到作用,可以将它们插入上下文或目标中

上图中,左图是不使用任何操作,右图是选择在居首和目标前插入promote的embedding,插入promote的过程可以表示为

其中x代表一系列离散的输入令牌,y代表目标(可以理解为希望模型想要给你的回答),e()表示对应的embedding,其实就是将其参数化映射成为伪tokens,即

通过最小化这些参数

1.2 promote生成

嵌入的promote实际上可以理解为不一定离散不相互关联的,而实际上的promote其实应该是高度离散的且具有关联性的,因此作者选择使用双向长短期记忆网络(LSTM),激活函数和MLP来建模这种关系

在推理中,我们只需要输出嵌入h,并且可以丢弃LSTM头

二.代码

本质上是使用一个PromptEncoder来生成伪的embedding添加到原先的embedding中

2.1 训练

训练过程只更新promote_encoder中的参数

 2.1.1 PromptEncoder

在PTuneForLAMA中实例化了PromptEncoder

 PromptEncoder本质上是一个(嵌入 + LSTM + MLP)

import torch
import torch.nn as nnclass PromptEncoder(torch.nn.Module):def __init__(self, template, hidden_size, tokenizer, device, args):super().__init__()self.device = deviceself.spell_length = sum(template)self.hidden_size = hidden_sizeself.tokenizer = tokenizerself.args = args# ent embeddingself.cloze_length = templateself.cloze_mask = [[1] * self.cloze_length[0]  # first cloze+ [1] * self.cloze_length[1]  # second cloze+ [1] * self.cloze_length[2]  # third cloze]self.cloze_mask = torch.LongTensor(self.cloze_mask).bool().to(self.device)self.seq_indices = torch.LongTensor(list(range(len(self.cloze_mask[0])))).to(self.device)# embeddingself.embedding = torch.nn.Embedding(len(self.cloze_mask[0]), self.hidden_size).to(self.device)# LSTMself.lstm_head = torch.nn.LSTM(input_size=self.hidden_size,hidden_size=self.hidden_size // 2,num_layers=2,dropout=self.args.lstm_dropout,bidirectional=True,batch_first=True)self.mlp_head = nn.Sequential(nn.Linear(self.hidden_size, self.hidden_size),nn.ReLU(),nn.Linear(self.hidden_size, self.hidden_size))print("init prompt encoder...")def forward(self):input_embeds = self.embedding(self.seq_indices).unsqueeze(0)output_embeds = self.mlp_head(self.lstm_head(input_embeds)[0]).squeeze()return output_embeds

2.1.2 调用

在PTuneForLAMA的forward函数中调用了embed_input来实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/196381.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java 批量更改

直接上代码 void batchUpdateSpecificationId(Param("infos") List<GoodsInfo> infos);<update id"batchUpdateSpecificationId">update goods_infoset specification_id <foreach collection"infos" item"info" open&…

【有源码】基于asp.net的旅游度假村管理系统C#度假村美食住宿一体化平台源码调试 开题 lw ppt

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&…

Qt布局技巧

可以先把控件放置了&#xff0c;再选中所有控件右键布局 或者是点击上面的&#xff1a;

【JavaEE】Servlet API 详解(HttpServletResponse类方法演示、实现自动刷新、实现自动重定向)

一、HttpServletResponse HttpServletResponse表示一个HTTP响应 Servlet 中的 doXXX 方法的目的就是根据请求计算得到相应, 然后把响应的数据设置到 HttpServletResponse 对象中 然后 Tomcat 就会把这个 HttpServletResponse 对象按照 HTTP 协议的格式, 转成一个字符串, 并通…

AI监管规则:各国为科技监管开辟了不同的道路

AI监管规则&#xff1a;各国为科技监管开辟了不同的道路 一份关于中国、欧盟和美国如何控制AI的指南。 编译 李升伟 茅 矛 &#xff08;特趣生物科技有限公司&#xff0c;广东深圳&#xff09; 插图&#xff1a;《自然》尼克斯宾塞 今年5月&#xff0c;科技公司OpenAI首席…

Mendix 创客访谈录|低代码赋能IoT应用开发

本期创客 郑锴 舜宇光学科技&#xff08;集团&#xff09;有限公司信息技术部 毕业于浙江大学&#xff0c;三年软件设计开发经验。目前任职于舜宇光学科技&#xff08;集团&#xff09;有限公司信息技术部&#xff0c;担任软件开发工程师&#xff0c;主要负责工业互联网相关软件…

【Linux】进程替换|exec系列函数

文章目录 一、看一看单进程版的进程替换二、进程替换的原理三、多进程版——验证各种程序替换接口exec系列函数execlexeclpexecvexecvp tipsexecleexecve 四、总结 一、看一看单进程版的进程替换 #include<stdio.h> #include<unistd.h> #include<stdlib.h>i…

深入了解百度爬虫工作原理

在当今数字化时代&#xff0c;互联网已经成为人们获取信息的主要渠道之一。而搜索引擎作为互联网上最重要的工具之一&#xff0c;扮演着连接用户与海量信息的桥梁角色。然而&#xff0c;我们是否曾经好奇过当我们在搜索引擎中输入关键词并点击搜索按钮后&#xff0c;究竟是如何…

【C++】类与对象 III 【 深入浅出理解 类与对象 】

文章内容 前言 &#xff1a;新关键字explicit 的引入一、explicit关键字二、static成员&#xff08;一&#xff09;概念&#xff08;二&#xff09;特性 三、匿名对象四、友元前言&#xff1a;友元的引入&#xff08;一&#xff09;友元的概念友元分为&#xff1a;友元函数 和 …

无需API开发,伯俊科技实现电商与客服系统的无缝集成

伯俊科技的无代码开发实现系统连接 自1999年成立以来&#xff0c;伯俊科技一直致力于为企业提供全渠道一盘货的服务。凭借其24年的深耕零售行业的经验&#xff0c;伯俊科技推出了一种无需API开发的方法&#xff0c;实现电商系统和客服系统的连接与集成。这种无代码开发的方式不…

解析 Python requests 库 POST 请求中的参数顺序问题

在这篇文章中&#xff0c;我们将探讨一个用户在使用Python的requests库进行POST请求时遇到的问题&#xff0c;即参数顺序的不一致。用户通过Fiddler进行网络抓包&#xff0c;发现请求体中的参数顺序与他设置的顺序不符。我们将深入了解POST请求的工作原理&#xff0c;并提供解决…

KVM Cloud云平台

项目介绍 KVM Cloud 是一款基于Java实现的轻量级私有云平台&#xff0c;旨在帮助中小企业快速实现计算、存储、网络等资源的管理&#xff0c;让企业拥有自己的云平台&#xff0c;包括但不限于如下功能: 1、基于KVM的VM基础功能(创建、启动、停止、重装、webVNC等功能) 2、使用…

【2】SM2验签工具和RSA验签工具

0X01 前言 最近看了好多验签工具&#xff0c;感觉不是很好用&#xff0c;就自己造了个。 0x02 工具功能介绍 对SM2算法进行验签和RSA算分进行验签&#xff0c;签名值可以是base64&#xff0c;也可以是十六进制。 兼容各种输入。 0x03 工具使用 RSA 验签 SM2 验签 0x04 工具…

浏览器页面被恶意控制时的解决方法

解决360流氓软件控制浏览器页面 提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、接受360安全卫士的好意&#xff08;尽量不要选&#xff09;二、拒绝360安全卫士的好意&#xff08;强烈推荐&#xff09;第…

Odoo:行业领先的免费开源财务管理解决方案

面向现代企业的财务和会计软件 可靠关账&#xff0c;更快速、更准确地报告财务数据 Odoo ERP财务和会计软件可帮助财务主管设计、革新和理顺财务流程和运营。Odoo ERP无缝整合各种核心财务和会计功能&#xff0c;提供强大的合规管理特性&#xff0c;有助于企业改善业务绩效、提…

一种基于NB‑IOT的粮库挡粮门异动监测装置

一种基于NB‑IOT的粮库挡粮门异动监测装置,包括若干个NB‑IOT开门监测装置、物联网后台管理系统、NB‑IOT低功耗广域网络和用户访问终端;各个NB‑IOT开门监测装置通过NB‑IOT低功耗广域网络与物联网后台管理系统连接,物联网后台管理系统与用户访问终端连接。 我国以往粮食收储…

MATLAB中Filter Designer的使用以及XILINX Coefficient(.coe)File的导出

文章目录 Filter Designer的打开滤波器参数设置生成matlab代码生成XILINX Coefficient(.COE) File实际浮点数的导出官方使用教程 Filter Designer的打开 打开Filter Designer&#xff1a; 方法一&#xff1a;命令行中输入Filter Designer&#xff0c;再回车打开。 方法二&…

Milvus Standalone安装

使用Docker Compose安装 Milvus standalone&#xff08;即单机版&#xff09;&#xff0c;进行一个快速milvus的体验。 前提条件&#xff1a; 1.系统可以使用centos 2.系统已经安装docker和docker-compose 3.milvus版本这里选择2.3.1 由于milvus依赖etcd和minio&#xff0c…

数据结构和算法八股与手撕

数据结构和算法八股文 第一章 数据结构 1.1 常见结构 见http://t.csdnimg.cn/gmc3U 1.2 二叉树重点 1.2.1 各种树的定义 满二叉树&#xff1a;只有度为0的结点和度为2的结点&#xff0c;并且度为0的结点在同一层上 完全二叉树&#xff1a;除了最底层节点可能没填满外&…

北邮22级信通院数电:Verilog-FPGA(9)第九周实验(4)实现寄存器74LS374

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章&#xff0c;请访问专栏&#xff1a; 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 一.代码部分 1.1 reg_74LS374.v 1.2 reg_LS3…