Hadoop学习总结(MapRdeuce的词频统计)

      MapRdeuce编程示例——词频统计

一、MapRdeuce的词频统计的过程

二、编程过程

1、Mapper 组件

WordcountMapper.java

package com.itcast.mrdemo;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;/*** Map 需要指定四个泛型,用来限定输入和输出的 key 和 value 的类型** hadoop 有自己的数据类型,不使用 java 的数据类型,对应的 java 类型名字后面 + Writable 就是 hadoop 类型* String 除外,String 对于的 hadoop 类型叫做 Text*  <2, "java">* */
public class WordcountMapper extends Mapper<LongWritable, Text,Text,IntWritable> {//重写Ctrl+o@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {/*** 1、把一行字符串拆分成单词 "hello java"* 2、把单词、数字每一个按照 map 规定的格式输出*/// 把 hadoop 类型转换为 java 类型(接收传入进来的一行文本,把数据类型转换为 String 类型)String line = value.toString();// 把字符串拆分为单词String[] words = line.split(" ");//使用 for 循环把单词数组胡每个单词输出for (String word : words){context.write(new Text(word), new IntWritable(1));}}
}

2、Reducer 组件

WordcountReducer.java

package com.itcast.mrdemo;import org.apache.hadoop.io.IntWritable;
//import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;/*** Reduce 需要指定四个泛型,用来限定输入和输出的 key 和 value 的类型* 1、Map 的输出就是 Reduce 的输入* 2、Reduce 的输出是 <"java", 2>*/
public class WordcountReducer extends Reducer<Text,IntWritable,Text,IntWritable> {@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable value : values){sum ++;}context.write(key,new IntWritable(sum));}
}

3、MapRdeuce 运行模式

MapRdeuce 程序的运行模式主要有两种

(1)本地运行模式

      在当前的开发环境模拟 MapRdeuce 执行环境,处理的数据及输出结果在本地操作系统WordcountDriver.java

package com.itcast.mrdemo;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class WordcountDriver{public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {//通过 Job 来封装本次 MR 的相关信息Configuration conf = new Configuration();//System.setProperty("HADOOP_USER_NAME","root");//配置 MR 运行模式,使用 local 表示本地模式,可以省略conf.set("mapreduce.framework.name","local");Job job = Job.getInstance(conf);//指定 MR Job jar 包运行主类job.setJarByClass(WordcountDriver.class);//指定本次 MR 所有的 Mapper Reducer 类job.setMapperClass(WordcountMapper.class);job.setReducerClass(WordcountReducer.class);//设置业务逻辑 Mapper 类的输出 key 和 value 的数据类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);//设置业务逻辑 Reducer 类的输出 key 和 value 的数据类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);//使用本地模式指定处理的数据所在的位置FileInputFormat.setInputPaths(job,"D:/homework2/Hadoop/mr/input");//使用本地模式指定处理完成之后的结果所保存的位置FileOutputFormat.setOutputPath(job, new Path("D:/homework2/Hadoop/mr/output"));//提交程序并且监控打印程序执行情况boolean res = job.waitForCompletion(true);//执行成功输出 0 ,不成功输出 1System.exit(res ? 0 : 1);}
}

运行结果为:

(2)集群运行模式

  • *在HDFS中创建文件

在HDFS中的/input目录下有word.txt文件,且文件中编写有内容(内容随意编写)

  • *对 WordcountDriver.java 修改

 修改WordcountDriver.java中的路径为HDFS上的路径

package com.itcast.mrdemo;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class WordcountDriver{public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {//通过 Job 来封装本次 MR 的相关信息Configuration conf = new Configuration();//System.setProperty("HADOOP_USER_NAME","root");//配置 MR 运行模式,使用 local 表示本地模式,可以省略conf.set("mapreduce.framework.name","local");Job job = Job.getInstance(conf);//指定 MR Job jar 包运行主类job.setJarByClass(WordcountDriver.class);//指定本次 MR 所有的 Mapper Reducer 类job.setMapperClass(WordcountMapper.class);job.setReducerClass(WordcountReducer.class);//设置业务逻辑 Mapper 类的输出 key 和 value 的数据类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);//设置业务逻辑 Reducer 类的输出 key 和 value 的数据类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);//使用本地模式指定处理的数据所在的位置FileInputFormat.setInputPaths(job,"/input");//使用本地模式指定处理完成之后的结果所保存的位置FileOutputFormat.setOutputPath(job, new Path("/output"));//提交程序并且监控打印程序执行情况boolean res = job.waitForCompletion(true);//执行成功输出 0 ,不成功输出 1System.exit(res ? 0 : 1);}
}
  • *对pom.xml添加内容

        <dependency><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId><version>1.7.30</version></dependency>
    <build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><version>3.6.1</version><configuration><source>1.8</source><target>1.8</target></configuration></plugin><!-- 把依赖的所有 jar 包打包到可执行 jar 中 --><plugin><artifactId>maven-assembly-plugin</artifactId><configuration><descriptorRefs><descriptorRef>jar-with-dependencies</descriptorRef></descriptorRefs></configuration><executions><execution><id>make-assembly</id><phase>package</phase><goals><goal>single</goal></goals></execution></executions></plugin></plugins></build>

 在这个位置进行添加

*在resources创建文件

在resources创建文件log4j.properties

添加以下内容

log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

  • *打包成jar包

 双击,进行打包

 结果出现以下字段则打包成功

  • *上传到虚拟机的home目录下

右键打开

重命名为wc 

 随便复制到一个目录下

使用远程连接工具(Xshell或者SecurityCRT)进行上传

  • *进行集群运行

进入home目录

cd /home
ll

 在 WordcountDriver.java下复制路径

hadoop jar wc.jar com.itcast.mrdemo.WordcountDriver

运行结果 

  • *查看HDFS 集群

进行查看

      集群运行成功

4、运行前准备操作

现在目录下创建一个文本

编写内容(随意编写)

5、Error while running command to get file permissions : java.io.IOException: (null) entry in command string: null ls -F D:\homework2\Hadoop\mr\input\word.txt

出现以下错误

解决方法一

下载winutils.exe和hadoop.dll放到C:\Windows\System32

链接:https://pan.baidu.com/s/1XwwUD9j3YT2AJMUNHmyzhw 
提取码:q7i7

解决方法二

输入指定文本路径

然后运行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/196489.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HP惠普光影精灵7笔记本Victus by HP 16.1英寸游戏本16-d0000原装出厂Windows11.21H2预装OEM系统

下载链接&#xff1a;https://pan.baidu.com/s/1LGNeQR1AF1XBJb5kfZca5w?pwdhwk6 提取码&#xff1a;hwk6 可适用的型号&#xff1a; 16-d0111tx&#xff0c;16-d0112tx&#xff0c;16-d0125tx&#xff0c;16-d0127tx&#xff0c;16-d0128tx&#xff0c;16-d0129tx&#…

MySql的C语言API

创建数据库&#xff08;开辟堆空间资源&#xff09; 连接数据库 查询数据库 获取查询结果&#xff0c;获取一行信息 mysql_use_result这个函数并不会真正获取数据&#xff0c;只有当使用mysql_fetch_row才真正获取 数据 mysql_store_result会直接把所有查询结果存储下来 释…

Python武器库开发-flask篇之Get与Post(二十五)

flask篇之Get与Post(二十五) 在Flask中通过request对象请求相关的数据,在正常的网页请求的过程中&#xff0c;有两种请求的方式&#xff0c;Get和Post Get请求 我们现在来看看在Flask中是如何以Get方式得到我们想要的值的&#xff0c;通过request.args可以获取Get请求中的所…

开源与闭源软件的辩论:对大模型技术发展的影响

目录 前言1 开源软件的优缺点1.1 开源软件的优点1.2 开源软件的缺点和挑战 2 闭源软件的优缺点2.1 闭源软件的优点2.2 闭源软件的缺点和挑战 3 大模型发展会走向哪一边结语 前言 近期&#xff0c;特斯拉CEO马斯克公开表示&#xff1a;OpenAI不该闭源&#xff0c;自家首款聊天机…

uniapp大概是怎么个开发法(前端)

写在前面&#xff0c;博主是个在北京打拼的码农&#xff0c;从事前端工作5年了&#xff0c;做过十多个大大小小不同类型的项目&#xff0c;最近心血来潮在这儿写点东西&#xff0c;欢迎大家多多指教。 对于文章中出现的任何错误请大家批评指出&#xff0c;一定及时修改。有任何…

mmdet 3.x 打印各类指标

和mmdet2.x中的修改地方不一样&#xff0c;在mmdet/evaluation/metrics/coco_metric.py中第72行将classwise设为True就可以打印各类指标了 但是在test的时候一直都是什么指标都不打印&#xff0c;不管是上面总的指标还是下面的各类指标&#xff0c;暂时不知道怎么处理 找到原因…

使用Pandas进行时间重采样,充分挖掘数据价值

大家好&#xff0c;时间序列数据蕴含着很大价值&#xff0c;通过重采样技术可以提升原始数据的表现形式。本文将介绍数据重采样方法和工具&#xff0c;提升数据可视化技巧。 在进行时间数据可视化时&#xff0c;数据重采样是至关重要且非常有用的&#xff0c;它支持控制数据的…

STM32 HAL库函数HAL_SPI_Receive_IT和HAL_SPI_Receive的区别

背景 前段时间开发一个按键板驱动&#xff0c;该板用的STM32F103系列单片机&#xff0c;前任工程师用STM32CubeMX生成的工程&#xff0c;里面全是HAL库调用&#xff0c;我接手后&#xff0c;学习了下HAL库的用法&#xff0c;踩坑不少&#xff0c;特别是带IT后缀的函数&#xf…

时序预测 | Python实现ConvLSTM卷积长短期记忆神经网络股票价格预测(Conv1D-LSTM)

时序预测 | Python实现ConvLSTM卷积长短期记忆神经网络股票价格预测(Conv1D-LSTM) 目录 时序预测 | Python实现ConvLSTM卷积长短期记忆神经网络股票价格预测(Conv1D-LSTM)预测效果基本介绍程序设计参考资料预测效果 基本介绍 时序预测 | Python实现ConvLSTM卷积长短期记忆神…

多视图聚类的论文阅读

当聚类的方式使用的是某一类预定义好的相似性度量时&#xff0c; 会出现如下情况&#xff1a; 数据聚类方面取得了成功&#xff0c;但它们通常依赖于预定义的相似性度量&#xff0c;而这些度量受原始方法的影响:当输入维数相对较高时&#xff0c;往往是无效的。 1. Deep Mult…

Flink1.17 DataStream API

目录 一.执行环境&#xff08;Execution Environment&#xff09; 1.1 创建执行环境 1.2 执行模式 1.3 触发程序执行 二.源算子&#xff08;Source&#xff09; 2.1 从集合中读取数据 2.2 从文件读取数据 2.3 从 RabbitMQ 中读取数据 2.4 从数据生成器读取数据 2.5 …

Pikachu漏洞练习平台之XXE(XML外部实体注入)

目录 什么是 XML&#xff1f; 什么是DTD&#xff1f; 什么是XEE&#xff1f; 常见payload 什么是 XML&#xff1f; XML 指可扩展标记语言&#xff08;EXtensible Markup Language&#xff09;&#xff1b; XML 不会做任何事情&#xff0c;而是用来结构化、存储以及传输信息…

2023最新最全【虚幻4引擎】下载安装零基础教程

1、创建Epic Games账户 我们先打开浏览器&#xff0c;输入以下网址&#xff1a;unrealengine.com 随后点击【立即开始】 选择许可证类型&#xff0c;此处提供三种选项&#xff0c;分别是【游戏】、【非游戏】以及【私人定制】 第一类许可证适用于游戏和商业互动产品&#xff…

机器学习第5天:多项式回归与学习曲线

文章目录 多项式回归介绍 方法与代码 方法描述 分离多项式 学习曲线的作用 场景 学习曲线介绍 欠拟合曲线 示例 结论 过拟合曲线 示例 ​结论 多项式回归介绍 当数据不是线性时我们该如何处理呢&#xff0c;考虑如下数据 import matplotlib.pyplot as plt impo…

安装最新版IntelliJ IDEA来开发Java应用程序

安装最新版IntelliJ IDEA来开发Java应用程序 Install the Latest Version of IntelliJ IDEA to Develop Java Applications 本文简要介绍如何安装配置JetBrains IntelliJ IDEA集成开发环境&#xff0c;从而开发Java应用程序&#xff1b;文中侧重实际操作和编程步骤&#xff0…

学习指南:如何快速上手媒体生态一致体验开发

过去开发者们在使用多媒体能力时&#xff0c;往往会遇到这样的问题&#xff0c;比如&#xff1a;为什么我开发的相机不如系统相机的效果好&#xff1f;为什么我的应用和其他的音乐一起发声了&#xff0c;我要怎么处理&#xff1f;以及我应该怎么做才能在系统的播控中心里可以看…

从C语言的面向过程编程过渡理解面向对象编程风格中的封装

在C语言中&#xff0c;我们解决一个问题通常是采用在了解了问题如何解决后&#xff0c;设置一个一个的函数&#xff0c;依次调用实现不同的功能的函数从而解决问题&#xff0c;这种编程风格就叫做面向过程。  除此之外&#xff0c;还有一种叫做面向对象的编程风格被广泛的使用…

【算法每日一练]-图论(保姆级教程 篇5(LCA,最短路,分层图)) #LCA #最短路计数 #社交网络 #飞行路线 # 第二短路

今天讲最短路统计和分层图 目录 题目&#xff1a;LCA 思路&#xff1a; 题目&#xff1a;最短路计数 思路&#xff1a; 题目&#xff1a;社交网络 思路&#xff1a; 题目&#xff1a;飞行路线 思路&#xff1a; 题目&#xff1a;第二短路 思路&#xff1a; 题目&a…

electron使用better-sqlite3打包失败(electron打包有进程没有界面)

remove *\chrome_100_percent.pak: Access is denied. 解决&#xff1a; 管理员权限执行&#xff1a;taskkill /IM 你的进程名.exe /F&#xff0c;再次执行build electron使用better-sqlite3打包后有进程没有界面 原因是代码及依赖包安装有误&#xff0c;模块丢失。主要分享的…