新版mmdetection3d将3D bbox绘制到图像

环境信息

使用 python mmdet3d/utils/collect_env.py收集环境信息

sys.platform: linux
Python: 3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 06:08:21) [GCC 9.4.0]
CUDA available: True
numpy_random_seed: 2147483648
GPU 0,1: NVIDIA GeForce RTX 3090
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.3, V11.3.109
GCC: gcc (Ubuntu 7.5.0-6ubuntu2) 7.5.0
PyTorch: 1.8.1+cu111
PyTorch compiling details: PyTorch built with:- GCC 7.3- C++ Version: 201402- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications- Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)- OpenMP 201511 (a.k.a. OpenMP 4.5)- NNPACK is enabled- CPU capability usage: AVX2- CUDA Runtime 11.1- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86- CuDNN 8.0.5- Magma 2.5.2- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, TorchVision: 0.9.1+cu111
OpenCV: 4.6.0
MMEngine: 0.9.1
MMDetection: 3.2.0
MMDetection3D: 1.3.0+9d3e162
spconv2.0: True

以前写过mmdetection3d中的可视化,但mmdetection3d更新后代码已经不适用了,正好我把我的工作全转移到新版mmdetection3d上来了,因此重新写了一下推理结果可视化。整体思路还是构建模型、构建数据、推理、绘制,下面分步讲解

1、构建模型

我用jupyter实现,首先需要确保jupyter的工作路径在mmdetection3d的工作路径下,不然会存在找不到mmdet3d的问题

import sys
import os
import torch
import cv2
import numpy as np# 添加工作路径,不然找不到mmdet3d
os.chdir('/home/wistful/work/open_mmlab_mmdetection3d')
sys.path.append('/home/wistful/work/open_mmlab_mmdetection3d')# load config
config_file = 'configs/point_cls_voxel/pointpillars_hv_secfpn_8x2-160e_kitti-3d-3class.py'
checkpoint_file = '/home/wistful/work/open_mmlab_mmdetection3d/work_dirs/pointpillars_hv_secfpn_8x2-160e_kitti-3d-3class/epoch_80.pth'# 构建模型
from mmdet3d.apis import init_model, inference_detector
device = 'cuda:0'
model = init_model(config_file, checkpoint=checkpoint_file, device=device)

至此模型已经构建,下一步是构建数据,送入模型以获取推理结果

2、构建数据

新版mmdet3d的模型输入分为两个部分batch_inputs_dict, batch_data_samplesbatch_inputs_dict包含了模型推理所需的数据(点云、图像),batch_data_samples包含了训练时需要的bbox等信息。因此,需要构建batch_inputs_dict,我写了一个简单的函数,可以调用

build_dataloader.py文件:

from mmdet3d.registry import DATASETS
from tools.misc.browse_dataset import build_data_cfg
from mmengine.registry import init_default_scopedef load_datasets(config_file, aug=False, set='train'):"""Args:config_file: 配置文件路径aug:是否数据增强(待测试)set:要读取的数据集,'train','test','val'Returns:"""cfg = build_data_cfg(config_file, aug=aug, cfg_options=None)init_default_scope(cfg.get('default_scope', 'mmdet3d'))# 选择需要读取的数据集if set == 'train':dataloader = cfg.train_dataloader.datasetelif set == 'val':dataloader = cfg.val_dataloader.datasetelif set == 'test':dataloader = cfg.test_dataloader.datasetreturn DATASETS.build(dataloader)def build_batch_dict(datasets, batch_size, device, images=False):"""Args:device: 指定设备datasets: 传入数据集batch_size: 批次大小images: 加入图像Returns:"""# TODO: 编写加入图像的代码points = []images = []batch_data_samples = []for i in range(batch_size):# 确保在同一个device上points.append(datasets[i]['inputs']['points'].to(device))data_samples = datasets[i]['data_samples']# if data_samples.gt_instances_3dif len(data_samples.gt_instances_3d.keys()) != 0:data_samples.gt_instances_3d.bboxes_3d = data_samples.gt_instances_3d.bboxes_3d.to(device)data_samples.gt_instances_3d.labels_3d = data_samples.gt_instances_3d.labels_3d.to(device)batch_inputs_dict = dict()batch_inputs_dict['points'] = points# batch_data_samples = data_samplesreturn batch_inputs_dict, batch_data_samplesdef cyclic_load_data_item(datasets, index, device, images=False):"""Args:device: 指定设备datasets: 传入数据集index: 索引images: 加入图像Returns:单条数据,适用于循环遍历整个数据集"""# TODO: 编写加入图像的代码points = []images = []points.append(datasets[index]['inputs']['points'].to(device))batch_inputs_dict = dict()batch_inputs_dict['points'] = pointsdata_samples = datasets[index]['data_samples']if len(data_samples.gt_instances_3d.keys()) !=0:data_samples.gt_instances_3d.bboxes_3d = data_samples.gt_instances_3d.bboxes_3d.to(device)data_samples.gt_instances_3d.labels_3d = data_samples.gt_instances_3d.labels_3d.to(device)batch_data_samples = [data_samples]return batch_inputs_dict, batch_data_samples

下面利用这个函数,实现构建数据集

# 构建数据集
from custom_API.build_dataloader import load_datasets # 我放在了custom_API路径下,如何导入取决于读者如何存放set = 'test'# set字段表示构建的数据集
datasets = load_datasets(dataset_config, aug=False, set=set) # aug字段表示不使用数据增强

至此,datasets为一个列表,长度就是数据集的总样本数。eg:datasets[0]里面就包含了第1个样本的全部信息,下面可以看一下输出

在这里插入图片描述

3、推理与绘制

我们已经得到了整个数据集,那么我们就可以使用数据集中的任意一条数据进行推理,根据这个思路,我们也能很方便的推理完整个数据集。绘制部分的代码我使用的是旧版mmdetection3d中的代码,下面是代码:

# draw_box.py
import osfrom custom_API.draw_utils import draw_lidar_bbox3d_on_img, draw_depth_bbox3d_on_img, draw_camera_bbox3d_on_img
import mmcv
from os import path as osp
import numpy as npdef show_multi_modality_result(img,gt_bboxes,pred_bboxes,batch_data_samples,out_dir,filename,type='train',box_mode='lidar',img_metas=None,show=False,gt_bbox_color=(61, 102, 255),pred_bbox_color=(241, 101, 72)):"""Convert multi-modality detection results into 2D results.将3D边框投影到2D图像平面并且可视化Project the predicted 3D bbox to 2D image plane and visualize them.Args:img (np.ndarray): The numpy array of image in cv2 fashion.gt_bboxes (:obj:`BaseInstance3DBoxes`): Ground truth boxes.pred_bboxes (:obj:`BaseInstance3DBoxes`): Predicted boxes.proj_mat (numpy.array, shape=[4, 4]): The projection matrix # 投影矩阵according to the camera intrinsic parameters.out_dir (str): Path of output directory.filename (str): Filename of the current frame.box_mode (str, optional): Coordinate system the boxes are in.Should be one of 'depth', 'lidar' and 'camera'.Defaults to 'lidar'.img_metas (dict, optional): Used in projecting depth bbox.Defaults to None.show (bool, optional): Visualize the results online. Defaults to False.颜色为B G R,不是RGB!!!gt_bbox_color (str or tuple(int), optional): Color of bbox lines.The tuple of color should be in BGR order. Default: (255, 102, 61).pred_bbox_color (str or tuple(int), optional): Color of bbox lines.The tuple of color should be in BGR order. Default: (72, 101, 241)."""# 根据传入3D框所处的坐标系调用对应的投影方法,获取投影框if box_mode == 'depth':draw_bbox = draw_depth_bbox3d_on_imgelif box_mode == 'lidar':draw_bbox = draw_lidar_bbox3d_on_imgelif box_mode == 'camera':draw_bbox = draw_camera_bbox3d_on_imgelse:raise NotImplementedError(f'unsupported box mode {box_mode}')# 在out_dir下创建每个文件名字的文件夹# result_path = osp.join(out_dir, filename)# mmcv.mkdir_or_exist(result_path)out_dir = out_dir + type + '/'# 判断目录是否存在if not os.path.exists(out_dir):os.makedirs(out_dir)else:pass# os.makedirs(out_dir)# mmcv.mkdir_or_exist(result_path)# if score_thr > 0:#     inds = pred_scores > score_thr#     pred_bboxes = pred_bboxes[inds]# 获取投影矩阵proj_mat = batch_data_samples[0].lidar2imgproj_mat = proj_mat[0]proj_mat = np.array(proj_mat)if show:show_img = img.copy()if gt_bboxes is not None:show_img = draw_bbox(gt_bboxes, show_img, proj_mat, img_metas, color=gt_bbox_color)if pred_bboxes is not None:show_img = draw_bbox(pred_bboxes,show_img,proj_mat,img_metas,color=pred_bbox_color)mmcv.imshow(show_img, win_name='project_bbox3d_img', wait_time=0)if img is not None:# print('写入原图像')mmcv.imwrite(img, osp.join(out_dir, f'{filename}.png'))if gt_bboxes is not None:# 写入地面真相gt_img = draw_bbox(gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)mmcv.imwrite(gt_img, osp.join(out_dir, f'{filename}_gt.png'))if pred_bboxes is not None:pred_img = draw_bbox(pred_bboxes, img, proj_mat, img_metas, color=pred_bbox_color)mmcv.imwrite(pred_img, osp.join(out_dir, f'{filename}_pred.png'))if pred_bboxes is not None and gt_bboxes is not None:# print('draw_gt_bbox')gt_img = draw_bbox(gt_bboxes, img, proj_mat, img_metas, color=gt_bbox_color)gt_and_pred_img = draw_bbox(pred_bboxes, gt_img, proj_mat, img_metas, color=pred_bbox_color)mmcv.imwrite(gt_and_pred_img, osp.join(out_dir, f'{filename}_pred_gt.png'))# draw_utils.py
# Copyright (c) OpenMMLab. All rights reserved.
import copyimport cv2
import numpy as np
import torch
from matplotlib import pyplot as pltdef project_pts_on_img(points,raw_img,lidar2img_rt,max_distance=70,thickness=-1):"""Project the 3D points cloud on 2D image.Args:points (numpy.array): 3D points cloud (x, y, z) to visualize.raw_img (numpy.array): The numpy array of image.lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrixaccording to the camera intrinsic parameters.max_distance (float, optional): the max distance of the points cloud.Default: 70.thickness (int, optional): The thickness of 2D points. Default: -1."""img = raw_img.copy()num_points = points.shape[0]pts_4d = np.concatenate([points[:, :3], np.ones((num_points, 1))], axis=-1)pts_2d = pts_4d @ lidar2img_rt.T# cam_points is Tensor of Nx4 whose last column is 1# transform camera coordinate to image coordinatepts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=99999)pts_2d[:, 0] /= pts_2d[:, 2]pts_2d[:, 1] /= pts_2d[:, 2]fov_inds = ((pts_2d[:, 0] < img.shape[1])& (pts_2d[:, 0] >= 0)& (pts_2d[:, 1] < img.shape[0])& (pts_2d[:, 1] >= 0))imgfov_pts_2d = pts_2d[fov_inds, :3]  # u, v, dcmap = plt.cm.get_cmap('hsv', 256)cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255for i in range(imgfov_pts_2d.shape[0]):depth = imgfov_pts_2d[i, 2]color = cmap[np.clip(int(max_distance * 10 / depth), 0, 255), :]cv2.circle(img,center=(int(np.round(imgfov_pts_2d[i, 0])),int(np.round(imgfov_pts_2d[i, 1]))),radius=1,color=tuple(color),thickness=thickness,)cv2.imshow('project_pts_img', img.astype(np.uint8))cv2.waitKey(0)def plot_rect3d_on_img(img,num_rects,rect_corners,color=(0, 255, 0),thickness=1):"""Plot the boundary lines of 3D rectangular on 2D images.Args:img (numpy.array): The numpy array of image.num_rects (int): Number of 3D rectangulars.rect_corners (numpy.array): Coordinates of the corners of 3Drectangulars. Should be in the shape of [num_rect, 8, 2].color (tuple[int], optional): The color to draw bboxes.Default: (0, 255, 0).thickness (int, optional): The thickness of bboxes. Default: 1."""line_indices = ((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (3, 2), (3, 7),(4, 5), (4, 7), (2, 6), (5, 6), (6, 7))# thickness = 0.5# print('rect_corners type:', rect_corners.dtype)# print('img type',type(img))for i in range(num_rects):corners = rect_corners[i].astype(np.int64)# print("opencv corners type:", corners.dtype)for start, end in line_indices:# cv2.line(img, (corners[start, 0], corners[start, 1]),#          (corners[end, 0], corners[end, 1]), color, thickness,#          cv2.LINE_AA)# print("change:", type(int(corners[start, 0])))cv2.line(img,tuple(corners[start]),tuple(corners[end]),color,thickness,cv2.LINE_AA)# cv2.line(img,#          (int(corners[start, 0]), int(corners[start, 1])),#          (int(corners[end, 0]), int(corners[end, 1])),#          color,#          thickness,#          cv2.LINE_AA)# return img.astype(np.uint8)return imgdef draw_lidar_bbox3d_on_img(bboxes3d,raw_img,lidar2img_rt,img_metas,color=(0, 255, 0),thickness=1):"""Project the 3D bbox on 2D plane and draw on input image.Args:bboxes3d (:obj:`LiDARInstance3DBoxes`):3d bbox in lidar coordinate system to visualize.raw_img (numpy.array): The numpy array of image.lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrixaccording to the camera intrinsic parameters.img_metas (dict): Useless here.color (tuple[int], optional): The color to draw bboxes.Default: (0, 255, 0).thickness (int, optional): The thickness of bboxes. Default: 1."""img = raw_img.copy()corners_3d = bboxes3d.corners.cpu().numpy()num_bbox = corners_3d.shape[0]pts_4d = np.concatenate([corners_3d.reshape(-1, 3),np.ones((num_bbox * 8, 1))], axis=-1)lidar2img_rt = copy.deepcopy(lidar2img_rt).reshape(4, 4)if isinstance(lidar2img_rt, torch.Tensor):lidar2img_rt = lidar2img_rt.cpu().numpy()pts_2d = pts_4d @ lidar2img_rt.Tpts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5)pts_2d[:, 0] /= pts_2d[:, 2]pts_2d[:, 1] /= pts_2d[:, 2]imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2)return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)# TODO: remove third parameter in all functions here in favour of img_metas
def draw_depth_bbox3d_on_img(bboxes3d,raw_img,calibs,img_metas,color=(0, 255, 0),thickness=1):"""Project the 3D bbox on 2D plane and draw on input image.Args:bboxes3d (:obj:`DepthInstance3DBoxes`, shape=[M, 7]):3d bbox in depth coordinate system to visualize.raw_img (numpy.array): The numpy array of image.calibs (dict): Camera calibration information, Rt and K.img_metas (dict): Used in coordinates transformation.color (tuple[int], optional): The color to draw bboxes.Default: (0, 255, 0).thickness (int, optional): The thickness of bboxes. Default: 1."""from mmdet3d.structures import points_cam2imgfrom mmdet3d.models import apply_3d_transformationimg = raw_img.copy()img_metas = copy.deepcopy(img_metas)corners_3d = bboxes3d.cornersnum_bbox = corners_3d.shape[0]points_3d = corners_3d.reshape(-1, 3)# first reverse the data transformationsxyz_depth = apply_3d_transformation(points_3d, 'DEPTH', img_metas, reverse=True)# project to 2d to get image coords (uv)uv_origin = points_cam2img(xyz_depth,xyz_depth.new_tensor(img_metas['depth2img']))uv_origin = (uv_origin - 1).round()imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)def draw_camera_bbox3d_on_img(bboxes3d,raw_img,cam2img,img_metas,color=(0, 255, 0),thickness=1):"""Project the 3D bbox on 2D plane and draw on input image.Args:bboxes3d (:obj:`CameraInstance3DBoxes`, shape=[M, 7]):3d bbox in camera coordinate system to visualize.raw_img (numpy.array): The numpy array of image.cam2img (dict): Camera intrinsic matrix,denoted as `K` in depth bbox coordinate system.img_metas (dict): Useless here.color (tuple[int], optional): The color to draw bboxes.Default: (0, 255, 0).thickness (int, optional): The thickness of bboxes. Default: 1."""from mmdet3d.structures import points_cam2imgimg = raw_img.copy()cam2img = copy.deepcopy(cam2img)corners_3d = bboxes3d.cornersnum_bbox = corners_3d.shape[0]points_3d = corners_3d.reshape(-1, 3)if not isinstance(cam2img, torch.Tensor):cam2img = torch.from_numpy(np.array(cam2img))assert (cam2img.shape == torch.Size([3, 3])or cam2img.shape == torch.Size([4, 4]))cam2img = cam2img.float().cpu()# project to 2d to get image coords (uv)uv_origin = points_cam2img(points_3d, cam2img)uv_origin = (uv_origin - 1).round()imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()return plot_rect3d_on_img(img, num_bbox, imgfov_pts_2d, color, thickness)

下面是推理和绘制的完整代码,必要的注释已经给出。

from custom_API.draw_box import show_multi_modality_result #如何导入取决于读者如何存放
print(f'datasets length:{len(datasets)}')
data_root = 'data/kitti/' # 数据集根路径
save_root = '/home/wistful/work/open_mmlab_mmdetection3d/visual_dir/predict_imgs/' # 保存可视化结果的根路径data_num = 100  # 最大不能超过数据集长度
# 判断一开始是读取的哪个数据集
if set == 'train' or set == 'val':new_set = 'training'
else:new_set = 'testing'
# 推理整个数据集的前data_num条数据
for i in tqdm(range(data_num), desc='process situation'):# cyclic_load_data_item代码位于第2步batch_inputs_dict, batch_data_samples = cyclic_load_data_item(datasets, index=i, device=device)  # 读取一条数据,并构建批次points = batch_inputs_dict['points'][0]  # 获取点云,因为是单条数据,所以直接取0# 获取检测结果result, data = inference_detector(model, points.cpu())bboxes_3d = result.pred_instances_3d.bboxes_3dlabels_3d = result.pred_instances_3d.labels_3dscores_3d = result.pred_instances_3d.scores_3d# 设置阈值thr = 0.4score = (scores_3d > thr)bboxes_3d = bboxes_3d[score] # 根据阈值筛选# 读取原始图像img_file_path = data_root + new_set + '/image_2/' + batch_data_samples[0].img_path[0]image = cv2.imread(img_file_path)img_name = batch_data_samples[0].img_path[0].split('.')[0] # 取一下文件名# 保存多模态结果(调用的旧版mmdet代码接口)show_multi_modality_result(img=image,box_mode='lidar',gt_bboxes=None,pred_bboxes=bboxes_3d,batch_data_samples=batch_data_samples,out_dir=save_root,filename=img_name,type=set,show=False)# result = model(batch_inputs_dict, batch_data_samples) # model的输入与具体模型有关

运行上述代码后,会在设置的save_root下生成可视化图片
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197214.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

要做好解决方案工程师,这些核心技能是必须要掌握的。

要做好解决方案工程师&#xff0c;以下是一些比较中肯的建议&#xff1a; 1、了解客户需求&#xff1a;解决方案工程师需要深入了解客户的需求和挑战&#xff0c;以便为他们提供定制化的解决方案。通过与客户交流、调研市场趋势等方式&#xff0c;了解客户的业务需求和目标&…

复合、委托、继承

1. 单例模式 静态实例对象在getInstance函数中定义&#xff0c;这样只有在调用函数时才会生成对象 2. 复合 1. 类中封装另一个类某些功能&#xff1b; 2. 构造、析构的调用过程 指明了复合中如何调用被包含类的构造函数&#xff0c;可以直接写在初始化列表位置&#xff1b; 3.…

机器学习第7天:逻辑回归

文章目录 介绍 概率计算 逻辑回归的损失函数 单个实例的成本函数 整个训练集的成本函数 鸢尾花数据集上的逻辑回归 Softmax回归 Softmax回归数学公式 Softmax回归损失函数 调用代码 参数说明 结语 介绍 作用&#xff1a;使用回归算法进行分类任务 思想&#xff1a;…

Egress Gateway

目录 文章目录 目录本节实战Egress Gateway访问外部服务1.Envoy 转发流量到外部服务2.控制对外部服务的访问3.直接访问外部服务总结 Egress 出口网关1.用 Egress gateway 发起 HTTP 请求2.用 Egress gateway 发起 HTTPS 请求 关于我最后 本节实战 实战名称&#x1f6a9; 实战&…

Android 13.0 Launcher3仿ios长按app图标实现抖动动画开始拖拽停止动画

1.概述 在13.0的系统rom定制化开发中,在对系统原生Launcher3的定制需求中,也有好多功能定制的,在ios等电子产品中 的一些好用的功能,也是可以被拿来借用的,所以在最近的产品开发需求中,需求要求模仿ios的 功能实现长按app图标实现抖动动画,接下来看如何分析该功能的实现…

Python中,我们可以使用pandas和numpy库对Excel数据进行预处理,包括读取数据、数据清洗、异常值剔除等

文章目录 一、什么是数据预处理二、对excel数据进行详细的数据预处理操作总结 一、什么是数据预处理 数据预处理是一种对数据进行清洗、整理、转换等操作的过程&#xff0c;旨在提高数据质量&#xff0c;使其适应模型的需求&#xff0c;从而改进数据挖掘或机器学习的结果。 数…

Learning Perception Module

参考文章&#xff1a;自动驾驶开发者说|框架|如何单独运行apollo相机感知模块&#xff1f; - 知乎引言文章主要尝试了apollo框架下&#xff0c;视觉感知模块的单独运行&#xff0c;并利用离线的数据包进行检测实时展示结果。过程相对来说比较顺利。在加上已经用VScode搭建的单步…

Linux常用命令——bye命令

在线Linux命令查询工具 bye 命令用于中断FTP连线并结束程序。。 补充说明 bye命令在ftp模式下&#xff0c;输入bye即可中断目前的连线作业&#xff0c;并结束ftp的执行。 语法 bye实例 bye在线Linux命令查询工具

软件测试/人工智能丨深入人工智能软件测试:PyTorch引领新时代

在人工智能的浪潮中&#xff0c;软件测试的角色变得愈发关键。本文将介绍在人工智能软件测试中的一些关键技术&#xff0c;以及如何借助PyTorch深度学习框架来推动测试的创新与升级。 PyTorch&#xff1a;深度学习的引擎 PyTorch作为一种开源的深度学习框架&#xff0c;为软件…

(C++)字符串相加

愿所有美好如期而遇 题目链接&#xff1a;415. 字符串相加 - 力扣&#xff08;LeetCode&#xff09; 思路 我们看到字符串长度可能到达一万&#xff0c;而且不允许使用处理大整数的库&#xff0c;也就是说&#xff0c;转成整数相加后再转成字符串是不可行的。 那么我们就让…

笔记本电脑没有声音?几招恢复声音流畅!

笔记本电脑已经成为我们日常生活和工作的重要工具&#xff0c;而其中的声音是其功能之一。然而&#xff0c;有时您可能会遇到笔记本电脑没有声音的问题&#xff0c;这可能是由多种原因引起的。在本文中&#xff0c;我们将深入探讨笔记本电脑没有声音的常见原因&#xff0c;并提…

15项基本SCADA技术技能

1. 人机界面 人机界面是将操作员连接到设备、系统或机器的仪表板或用户界面。 以下是 hmi 在 scada 技术人员简历中的使用方式&#xff1a; 完成了查尔斯湖废水处理厂和提升站的完整 HMI 图形界面。对加油系统、加油车、PLC、HMI、触摸屏进行故障排除和维修。对 Horner HMI …

【LLM】基于LLM的agent应用(更新中)

note 在未来&#xff0c;Agent 还会具备更多的可扩展的空间。 就 Observation 而言&#xff0c;Agent 可以从通过文本输入来观察来理解世界到听觉和视觉的集成&#xff1b;就 Action 而言&#xff0c;Agent 在具身智能的应用场景下&#xff0c;对各种器械进行驱动和操作。 Age…

企业数字化转型的好处?_光点科技

企业数字化转型是当今商业世界中一个至关重要的议题。数字化转型不仅仅意味着采用新技术&#xff0c;而是涉及到企业在文化、运营和客户体验方面的根本变革。那么&#xff0c;企业数字化转型的好处是什么呢&#xff1f; 1.数字化转型可以显著提高企业的运营效率。 通过自动化流…

ChinaSoft 论坛巡礼 | 新兴系统软件论坛

2023年CCF中国软件大会&#xff08;CCF ChinaSoft 2023&#xff09;由CCF主办&#xff0c;CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办&#xff0c;将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…

Portraiture2024PS/LR专用智能磨皮插件,AI算法美颜,提高P图效率

ps皮肤美白磨皮滤镜有吗&#xff1f;ps本身无自带美白磨皮滤镜&#xff0c;虽然部分滤镜有磨皮、提亮功能&#xff0c;但往往需要搭配蒙版、通道功能使用。但ps可安装第三方软件&#xff0c;比如常用的磨皮插件portraiture3&#xff0c;那么&#xff0c;磨皮插件portraiture3怎…

xstream实现xml和java bean 互相转换

目录 pom引用java bean 类XML 转换工具类测试类执行结果注意问题 JAXB方式见&#xff1a; JAXB实现XML和Bean相互转换 Java中实现XML和Bean的转换的方式或插件有以下几种&#xff1a; JAXB&#xff08;Java Architecture for XML Binding&#xff09;&#xff1a;JAXB是Java …

多因素方差分析(Multi-way Analysis of Variance) R实现

1, data0507 flower 是某种植物在两个海拔和两个气温下的开花高度&#xff0c;采用合适 的统计方法&#xff0c;检验该种植物的开花高度在不同的海拔之间和不同的气温之间有无差异&#xff1f;如果有差异&#xff0c;具体如何差异的&#xff1f;&#xff08;说明依据、结论等关…

2023OceanBase年度发布会后,有感

很荣幸收到了OceanBase邀请&#xff0c;于本周四&#xff08;11月16日&#xff09;参加了OceanBase年度发布会并参加了DBA老友会&#xff0c;按照理论应该我昨天&#xff08;星期五&#xff09;就回到成都了&#xff0c;最迟今天白天就该把文章写出来了&#xff0c;奈何媳妇儿买…

第9章 K8s进阶篇-持久化存储入门

9.1 k8s存储Volumes介绍 Container&#xff08;容器&#xff09;中的磁盘文件是短暂的&#xff0c;当容器崩溃时&#xff0c;kubelet会重新启动容器&#xff0c;但最初的文件将丢失&#xff0c;Container会以最干净的状态启动。另外&#xff0c;当一个Pod运行多个Container时&…