机器学习第7天:逻辑回归

文章目录

介绍

概率计算

逻辑回归的损失函数

单个实例的成本函数

整个训练集的成本函数

鸢尾花数据集上的逻辑回归

Softmax回归

Softmax回归数学公式

Softmax回归损失函数

调用代码

参数说明

结语


介绍

作用:使用回归算法进行分类任务

思想:将回归值转为概率值,然后找到一个适当的数值,当概率大于这个值时,归为一类,当小于这个值时,归为另一类


概率计算

p=\sigma (x^{T}w)

函数的输入值为特征的加权和 x^{T}w

\sigma是sigmoid函数,公式为

\sigma(t) =\frac{1}{1+e^{(-t)}}

函数图像为

可见它输出一个0-1的值,我们可以将这个值当作概率 

则我们可以通过这个概率来分类,设定一个值,在这个值的两端进行分类


逻辑回归的损失函数

单个实例的成本函数

当p>=0.5时

c(w)=-log(p)

当p<0.5时

c(w)=-log(1-p)


整个训练集的成本函数

J(w)=\frac{1}{m}\sum_{i=1}^{m}[y^{i}log(p^{i})+(1-y^{i})log(1-p^{i})]

这个损失函数也是一个凸函数,可以使用梯度下降法使损失最小化


鸢尾花数据集上的逻辑回归

鸢尾花数据集是机器学习中一个经典的数据集,它有花瓣和花萼的长和宽,任务是用它们来判断鸢尾花的种类

看代码和效果

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
import numpy as npiris = datasets.load_iris()x = iris["data"][:, 3:]
y = (iris["target"] == 2)model = LogisticRegression()
model.fit(x, y)x_new = np.linspace(0, 3, 1000).reshape(-1, 1)
y_proba = model.predict_proba(x_new)
plt.plot(x_new, y_proba[:, 1], "g-", label="Iris virginica")
plt.plot(x_new, y_proba[:, 0], "b--", label="Not Iris virginica")plt.xlabel("Petal width")
plt.ylabel("probability")plt.legend()
plt.show()

可以看见,当花瓣长度变化的时候,两种花种类的概率随之变化

简单介绍一下新的代码,predict.proba方法返回样本为可能的两种花的概率。


Softmax回归

上述方法主要用于二分类任务,我们再来看一种多分类方法,Softmax回归


Softmax回归数学公式

Softmax(s_{i})=\frac{e^{s_{i}}}{\sum_{j=1}^{n}e^{s_{j}}}

Softmax函数也叫指数归一化函数,它对x进行指数处理再进行归一化得出一个概率

这个函数的自变量为一个分数s,这个s由我们的数据的转置矩阵与一个参数相乘得来

s = x^{T}\theta

对于不同的类,参数\theta都不相同,模型训练的任务就是拟合这个参数


Softmax回归损失函数

L = -\frac{1}{m}\sum_{i=1}^{m}\sum_{K}^{k=1}y_{k}^{i}log(p_{k}^{i})

当k=2时(二分类),此成本函数等于sigmoid逻辑回归的成本函数


调用代码

model = LogisticRegression(multi_class="multinomial", solver="lbfgs", C=10)
model.fit(x, y)

参数说明

multi_class="multinomial": 表示采用多类别分类,即多类别的逻辑回归问题,与二元逻辑回归不同。

solver="lbfgs": 表示使用LBFGS(Limited-memory Broyden–Fletcher–Goldfarb–Shanno)优化算法进行求解。

C=10: 表示正则化参数,控制模型的正则化强度,C值越小,正则化强度越高。


结语

逻辑回归是一种简单的分类方法,二分类任务就用第一种方法,多分类任务就用第二种方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197209.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Egress Gateway

目录 文章目录 目录本节实战Egress Gateway访问外部服务1.Envoy 转发流量到外部服务2.控制对外部服务的访问3.直接访问外部服务总结 Egress 出口网关1.用 Egress gateway 发起 HTTP 请求2.用 Egress gateway 发起 HTTPS 请求 关于我最后 本节实战 实战名称&#x1f6a9; 实战&…

Android 13.0 Launcher3仿ios长按app图标实现抖动动画开始拖拽停止动画

1.概述 在13.0的系统rom定制化开发中,在对系统原生Launcher3的定制需求中,也有好多功能定制的,在ios等电子产品中 的一些好用的功能,也是可以被拿来借用的,所以在最近的产品开发需求中,需求要求模仿ios的 功能实现长按app图标实现抖动动画,接下来看如何分析该功能的实现…

Python中,我们可以使用pandas和numpy库对Excel数据进行预处理,包括读取数据、数据清洗、异常值剔除等

文章目录 一、什么是数据预处理二、对excel数据进行详细的数据预处理操作总结 一、什么是数据预处理 数据预处理是一种对数据进行清洗、整理、转换等操作的过程&#xff0c;旨在提高数据质量&#xff0c;使其适应模型的需求&#xff0c;从而改进数据挖掘或机器学习的结果。 数…

Learning Perception Module

参考文章&#xff1a;自动驾驶开发者说|框架|如何单独运行apollo相机感知模块&#xff1f; - 知乎引言文章主要尝试了apollo框架下&#xff0c;视觉感知模块的单独运行&#xff0c;并利用离线的数据包进行检测实时展示结果。过程相对来说比较顺利。在加上已经用VScode搭建的单步…

Linux常用命令——bye命令

在线Linux命令查询工具 bye 命令用于中断FTP连线并结束程序。。 补充说明 bye命令在ftp模式下&#xff0c;输入bye即可中断目前的连线作业&#xff0c;并结束ftp的执行。 语法 bye实例 bye在线Linux命令查询工具

软件测试/人工智能丨深入人工智能软件测试:PyTorch引领新时代

在人工智能的浪潮中&#xff0c;软件测试的角色变得愈发关键。本文将介绍在人工智能软件测试中的一些关键技术&#xff0c;以及如何借助PyTorch深度学习框架来推动测试的创新与升级。 PyTorch&#xff1a;深度学习的引擎 PyTorch作为一种开源的深度学习框架&#xff0c;为软件…

(C++)字符串相加

愿所有美好如期而遇 题目链接&#xff1a;415. 字符串相加 - 力扣&#xff08;LeetCode&#xff09; 思路 我们看到字符串长度可能到达一万&#xff0c;而且不允许使用处理大整数的库&#xff0c;也就是说&#xff0c;转成整数相加后再转成字符串是不可行的。 那么我们就让…

笔记本电脑没有声音?几招恢复声音流畅!

笔记本电脑已经成为我们日常生活和工作的重要工具&#xff0c;而其中的声音是其功能之一。然而&#xff0c;有时您可能会遇到笔记本电脑没有声音的问题&#xff0c;这可能是由多种原因引起的。在本文中&#xff0c;我们将深入探讨笔记本电脑没有声音的常见原因&#xff0c;并提…

15项基本SCADA技术技能

1. 人机界面 人机界面是将操作员连接到设备、系统或机器的仪表板或用户界面。 以下是 hmi 在 scada 技术人员简历中的使用方式&#xff1a; 完成了查尔斯湖废水处理厂和提升站的完整 HMI 图形界面。对加油系统、加油车、PLC、HMI、触摸屏进行故障排除和维修。对 Horner HMI …

【LLM】基于LLM的agent应用(更新中)

note 在未来&#xff0c;Agent 还会具备更多的可扩展的空间。 就 Observation 而言&#xff0c;Agent 可以从通过文本输入来观察来理解世界到听觉和视觉的集成&#xff1b;就 Action 而言&#xff0c;Agent 在具身智能的应用场景下&#xff0c;对各种器械进行驱动和操作。 Age…

企业数字化转型的好处?_光点科技

企业数字化转型是当今商业世界中一个至关重要的议题。数字化转型不仅仅意味着采用新技术&#xff0c;而是涉及到企业在文化、运营和客户体验方面的根本变革。那么&#xff0c;企业数字化转型的好处是什么呢&#xff1f; 1.数字化转型可以显著提高企业的运营效率。 通过自动化流…

ChinaSoft 论坛巡礼 | 新兴系统软件论坛

2023年CCF中国软件大会&#xff08;CCF ChinaSoft 2023&#xff09;由CCF主办&#xff0c;CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办&#xff0c;将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…

Portraiture2024PS/LR专用智能磨皮插件,AI算法美颜,提高P图效率

ps皮肤美白磨皮滤镜有吗&#xff1f;ps本身无自带美白磨皮滤镜&#xff0c;虽然部分滤镜有磨皮、提亮功能&#xff0c;但往往需要搭配蒙版、通道功能使用。但ps可安装第三方软件&#xff0c;比如常用的磨皮插件portraiture3&#xff0c;那么&#xff0c;磨皮插件portraiture3怎…

xstream实现xml和java bean 互相转换

目录 pom引用java bean 类XML 转换工具类测试类执行结果注意问题 JAXB方式见&#xff1a; JAXB实现XML和Bean相互转换 Java中实现XML和Bean的转换的方式或插件有以下几种&#xff1a; JAXB&#xff08;Java Architecture for XML Binding&#xff09;&#xff1a;JAXB是Java …

多因素方差分析(Multi-way Analysis of Variance) R实现

1, data0507 flower 是某种植物在两个海拔和两个气温下的开花高度&#xff0c;采用合适 的统计方法&#xff0c;检验该种植物的开花高度在不同的海拔之间和不同的气温之间有无差异&#xff1f;如果有差异&#xff0c;具体如何差异的&#xff1f;&#xff08;说明依据、结论等关…

2023OceanBase年度发布会后,有感

很荣幸收到了OceanBase邀请&#xff0c;于本周四&#xff08;11月16日&#xff09;参加了OceanBase年度发布会并参加了DBA老友会&#xff0c;按照理论应该我昨天&#xff08;星期五&#xff09;就回到成都了&#xff0c;最迟今天白天就该把文章写出来了&#xff0c;奈何媳妇儿买…

第9章 K8s进阶篇-持久化存储入门

9.1 k8s存储Volumes介绍 Container&#xff08;容器&#xff09;中的磁盘文件是短暂的&#xff0c;当容器崩溃时&#xff0c;kubelet会重新启动容器&#xff0c;但最初的文件将丢失&#xff0c;Container会以最干净的状态启动。另外&#xff0c;当一个Pod运行多个Container时&…

Linux C 线程

线程 概述线程和进程的异同如何选择使用进程还是线程 函数获取进程自身ID  pthread_self创建线程  pthread_create退出线程  pthread_exit线程等待  pthread_join 四种线程模型1 &#xff09;单线程2 &#xff09;单线程3 &#xff09;双线程4 &#xff09;三线程 概述…

记录我常用的免费API接口

目录 1.随机中英文句子 2.随机中英文句子&#xff08;带图片和音频&#xff09; 3.随机一句诗 4.随机一句话 5.随机一句情话 6. 随机一句舔狗语录 7.历史上的今天 8.获取来访者ip地址 9&#xff1a;获取手机号信息 10. 垃圾分类查询 11.字典查询 12.QQ信息查询 1.随…

Alibaba Nacos注册中心源码剖析

Nacos&Ribbon&Feign核心微服务架构图 架构原理&#xff1a; 微服务系统在启动时将自己注册到服务注册中心&#xff0c;同时对外发布 Http 接口供其它系统调用&#xff08;一般都是基于Spring MVC&#xff09;服务消费者基于 Feign 调用服务提供者对外发布的接口&…