4种经典的限流算法

0、基础知识

1000毫秒内,允许2个请求,其他请求全部拒绝。

不拒绝就可能往db打请求,把db干爆~

interval = 1000 

rate = 2;

一、固定窗口限流

固定窗口限流算法(Fixed Window Rate Limiting Algorithm)是一种最简单的限流算法,其原理是在固定时间窗口(单位时间)内限制请求的数量。通俗点说主要通过一个支持原子操作的计数器来累计 1 秒内的请求次数,当 1 秒内计数达到限流阈值时触发拒绝策略。每过 1 秒,计数器重置为 0 开始重新计数。

/*** 固定窗口限流算法* 比如1000ms 允许通过10个请求* @author jeb_lin* 14:14 2023/11/19*/
public class FixWindowRateLimiter {private long interval; // 窗口的时间间隔private long rate; // 限制的调用次数private long lastTimeStamp; // 上次请求来的时间戳private AtomicLong counter; // 计数器public FixWindowRateLimiter(long interval,long rate){this.interval = interval;this.rate = rate;this.lastTimeStamp = System.currentTimeMillis();this.counter = new AtomicLong(0);}public static void main(String[] args) {// 比如1000ms 允许通过10个请求FixWindowRateLimiter limiter = new FixWindowRateLimiter(1000,2);for (int i = 0; i < 4; i++) {if(limiter.allow()){System.out.println(i + " -> ok ");} else {System.out.println(i + " -> no");}}}private boolean allow() {long now = System.currentTimeMillis();if(now - lastTimeStamp > interval){counter.set(0L);lastTimeStamp = now;}if(counter.get() >= rate){return false;} else {counter.incrementAndGet();return true;}}
}

输出:

0 -> ok 
1 -> ok 
2 -> no
3 -> no

优点

  1. 简单易懂

缺陷

  1. 存在临界问题

本来就允许1秒内进来2个请求,这时候进来了4个

 /*** 测试不正常的情况*/private static void testUnNormal() throws Exception{// 比如1000ms 允许通过10个请求FixWindowRateLimiter limiter = new FixWindowRateLimiter(1000,2);Thread.sleep(500);for (int i = 0; i < 4; i++) {if(limiter.allow()){System.out.println(i + " -> ok ");} else {System.out.println(i + " -> no");}Thread.sleep(250);}}

输出:

0 -> ok 
1 -> ok 
2 -> ok 
3 -> ok 

二、滑动窗口限流

滑动窗口限流算法是一种常用的限流算法,它将单位时间周期分为n个小周期,分别记录每个小周期内接口的访问次数,并且根据时间滑动删除过期的小周期。比如上图的示例中,每 500ms 滑动一次窗口就可以避免这种临界问题,可以发现窗口滑动的间隔越短,时间窗口的临界突变问题发生的概率也就越小,不过只要有时间窗口的存在,还是有可能发生时间窗口的临界突变问题。

类似于微积分:假如我切成1000个窗口,每1ms一个计数器

/*** 滑动窗口限流算法* 比如1000ms 允许通过 2 个请求** @author jeb_lin* 14:14 2023/11/19*/
public class SlidingWindowRateLimiter {private long interval; // 窗口的时间间隔private long maxRequest; // 限制的调用次数private Map<Long, AtomicLong> millToCount = null; // 假如1秒切成1000个窗口,也就是1毫秒一个计数器private LinkedList<Long> timeStampList = null; // 出现请求的那个时间戳,需要记录下来,用于后期的删除private AtomicLong counter; // 计数器public SlidingWindowRateLimiter(long interval, long maxRequest) {this.interval = interval;this.maxRequest = maxRequest;this.millToCount = new HashMap<>();this.timeStampList = new LinkedList<>();this.counter = new AtomicLong(0);}public static void main(String[] args) throws Exception {testNormal();}/*** 测试正常的情况*/private static void testNormal() {// 比如1000ms 允许通过10个请求SlidingWindowRateLimiter limiter = new SlidingWindowRateLimiter(1000, 2);for (int i = 0; i < 10; i++) {if (limiter.allow()) {System.out.println(i + " -> ok ");} else {System.out.println(i + " -> no");}}}private boolean allow() {long now = System.currentTimeMillis();// 剔除掉过期的窗口,比如现在是1001ms,那么1ms的窗口就需要剔除掉while (!timeStampList.isEmpty() && now - interval > timeStampList.getFirst()) {long timeStamp = timeStampList.poll();for (int i = 0; i < millToCount.getOrDefault(timeStamp,new AtomicLong(0)).get(); i++) {counter.decrementAndGet();}millToCount.remove(timeStamp);}if (counter.get() >= maxRequest) {return false;} else {timeStampList.add(now); // 当前出现成功请求,那么串上listAtomicLong timeStampCounter = millToCount.getOrDefault(now, new AtomicLong(0L));timeStampCounter.incrementAndGet();millToCount.put(now, timeStampCounter);counter.incrementAndGet();return true;}}
}

优点

  1. 简单易懂
  2. 精度高(通过调整时间窗口的大小来实现不同的限流效果)

缺陷

  1. 依旧存在临界问题,不可能无限小
  2. 占用更多内存空间

三、漏桶算法(固定消费速率)

漏桶限流算法(Leaky Bucket Algorithm)拥有更平滑的流量控制能力。其中漏桶是一个形象的比喻,这里可以用生产者消费者模式进行说明,请求是一个生产者,每一个请求都如一滴水,请求到来后放到一个队列(漏桶)中,而桶底有一个孔,不断的漏出水滴,就如消费者不断的在消费队列中的内容,消费的速率(漏出的速度)等于限流阈值。即假如 QPS 为 2,则每 1s / 2= 500ms 消费一次。漏桶的桶有大小,就如队列的容量,当请求堆积超过指定容量时,会触发拒绝策略。

类似于Kafka的消费者,在不调整配置的情况下,消费速度是固定的,多余的请求会积压,如果超过你kafka配置的topic最大磁盘容量,那么会丢消息。(topic是一个目录,topic下N个partition目录,假如你每个partition配置了1G的容量,那么超过这个这个容量,就会删除partition下的segement文件 xxx.index,xxx.log)

/*** 漏桶算法* 比如 1秒只能消费2个请求** @author jeb_lin* 15:55 2023/11/19*/
public class LeakyBucketRateLimiter {private int consumerRate; // 消费速度private Long interval; // 时间间隔,比如1000msprivate int bucketCapacity; // 桶的容量private AtomicLong water; // 桶里面水滴数量public LeakyBucketRateLimiter(int consumerRate, Long interval, int bucketCapacity) {this.consumerRate = consumerRate;this.interval = interval;this.bucketCapacity = bucketCapacity;this.water = new AtomicLong(0);scheduledTask();}// 周期任务,比如每1000ms消费2个请求private void scheduledTask() {ScheduledExecutorService service = Executors.newScheduledThreadPool(1);service.scheduleAtFixedRate((Runnable) () -> {for (int i = 0; i < consumerRate && water.get() > 0; i++) {this.water.decrementAndGet();}System.out.println("water -> " + this.water.get());}, 0, interval, TimeUnit.MILLISECONDS);}public static void main(String[] args) {// 1000毫秒消费2个请求LeakyBucketRateLimiter limiter = new LeakyBucketRateLimiter(2, 1000L, 10);for (int i = 0; i < 10; i++) {if (limiter.allow()) {System.out.println(i + "-> ok");} else {System.out.println(i + "-> no");}}}private boolean allow() {if (bucketCapacity < water.get() + 1) {return false;} else {water.incrementAndGet();return true;}}
}

输出:

0 -> ok 
1 -> ok 
2 -> no
3 -> no
4 -> no
5 -> no
6 -> no
7 -> no
8 -> no
9 -> no

优点

  1. 可以控制请求的处理速度,避免过载或者过度闲置,避免瞬间请求过多导致系统崩溃或者雪崩。
  2. 可以通过调整桶的大小和漏出速率来满足不同的限流需求(这个基本靠手动)

缺陷

  1. 需要对请求进行缓存,会增加服务器的内存消耗。
  2. 但是面对突发流量的时候,漏桶算法还是循规蹈矩地按照固定的速率处理请求。

四、令牌桶算法

令牌桶算法是一种常用的限流算法,相对于漏桶算法,它可以更好地应对突发流量和解决内存消耗的问题。该算法维护一个固定容量的令牌桶,每秒钟会向令牌桶中放入一定数量的令牌。当有请求到来时,如果令牌桶中有足够的令牌,则请求被允许通过并从令牌桶中消耗一个令牌,否则请求被拒绝。

4.2 令牌桶限流代码实现


import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;/*** 令牌桶限流算法* 每 1000ms 生成2个令牌** @author jeb_lin* 14:14 2023/11/19*/
public class TokenBucketRateLimiter {private long interval; // 窗口的时间间隔private long rate; // 速率private AtomicLong tokenCounter; // 令牌的数量private final long bucketCapacity; // 桶的大小public TokenBucketRateLimiter(long interval, long rate ,long bucketCapacity) {this.interval = interval;this.rate = rate;this.tokenCounter = new AtomicLong(0);this.bucketCapacity = bucketCapacity;scheduledProduceToken();}private void scheduledProduceToken() {ExecutorService executorService = Executors.newScheduledThreadPool(1);((ScheduledExecutorService) executorService).scheduleAtFixedRate(new Runnable() {@Overridepublic void run() {// 桶里面放不下了if(tokenCounter.get() + rate > bucketCapacity){System.out.println("bucket is full");return;}long token = tokenCounter.addAndGet(rate);System.out.println("token -> " + token);}}, 0, interval, TimeUnit.MILLISECONDS);}public static void main(String[] args) throws Exception {testNormal();}/*** 测试正常的情况*/private static void testNormal() throws Exception{// 比如1000ms 允许通过10个请求TokenBucketRateLimiter limiter = new TokenBucketRateLimiter(1000, 2,10);// 模拟瞬时流量,5秒前都没请求,5秒后瞬时流量上来了Thread.sleep(5000);for (int i = 0; i < 12; i++) {if (limiter.allow()) {System.out.println(i + " -> ok ");} else {System.out.println(i + " -> no");}}}private boolean allow() {if(tokenCounter.get() > 0){tokenCounter.getAndDecrement();return true;}return false;}
}

输出:

token -> 2
token -> 4
token -> 6
token -> 8
token -> 10
bucket is full
0 -> ok 
1 -> ok 
2 -> ok 
3 -> ok 
4 -> ok 
5 -> ok 
6 -> ok 
7 -> ok 
8 -> ok 
9 -> ok 
10 -> no
11 -> no

优点

Guava的RateLimiter限流组件,就是基于令牌桶算法实现的。

  1. 精度高:令牌桶算法可以根据实际情况动态调整生成令牌的速率,可以实现较高精度的限流。
  2. 弹性好:令牌桶算法可以处理突发流量,可以在短时间内提供更多的处理能力,以处理突发流量。

缺陷

  1. 实现复杂:在短时间内有大量请求到来时,可能会导致令牌桶中的令牌被快速消耗完,从而限流。这种情况下,可以考虑使用漏桶算法。(需要削峰填谷,学习kafka就用漏桶算法)
  2. 时间精度要求高:令牌桶算法需要在固定的时间间隔内生成令牌,因此要求时间精度较高,如果系统时间不准确,可能会导致限流效果不理想。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197568.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文件传输客户端 SecureFX mac中文版支持多种协议

SecureFX mac是一款功能强大的文件传输客户端&#xff0c;可在 Mac 操作系统上使用。它由 VanDyke Software 公司开发&#xff0c;旨在为用户提供安全、可靠、高效的文件传输服务。 SecureFX 支持多种协议&#xff0c;包括 SFTP、SCP、FTP、FTP over SSL/TLS 和 HTTP/S。它使用…

支持4KHz回报还能无线充电,简约不简单的雷柏VT3S游戏鼠标上手

这两年国产鼠标的表现很让人惊喜&#xff0c;不仅外观做工越来越精细&#xff0c;配置也越来越强大&#xff0c;当然价格依然亲民。现在很容易找到一款搭载高端传感器、响应速度快、电池续航时间长&#xff0c;并且还支持无线充电的全能型鼠标。 我之前用雷柏的鼠标比较多&…

Transformer ZOO

Natural Language Processing Transformer:Attention is all you need URL(46589)2017.6 提出Attention机制可以替代卷积框架。引入Position Encoding&#xff0c;用来为序列添加前后文关系。注意力机制中包含了全局信息自注意力机制在建模序列数据中的长期依赖关系方面表现出…

vue项目本地开发完成后部署到服务器后报404

vue项目本地开发完成后部署到服务器后报404是什么原因呢&#xff1f; 一、如何部署 前后端分离开发模式下&#xff0c;前后端是独立布署的&#xff0c;前端只需要将最后的构建物上传至目标服务器的web容器指定的静态目录下即可 我们知道vue项目在构建后&#xff0c;是生成一系…

统信UOS通过源码安装软件提示“configure: error: cannot run C compiled programs.”错误

1. 问题说明 使用源码的方式安装git软件&#xff0c;安装过程中出现两个错误。 编译错误“cannot run C compiled programs” XC:~/Downloads/git-2.42.1$ ./configure --prefix/home/software/git-2.42.1 configure: Setting lib to lib (the default) configure: Will try…

计算机组成原理-双端口RAM和多模块存储器

文章目录 存取周期总览双端口RAM多体并行存储器低地址交叉编址有多少个存储体合适&#xff08;体号&#xff09;多模块存储器&#xff08;多体存储器&#xff09;总结实际场景 存取周期 总览 双端口RAM RAM&#xff1a;用于主存或高速缓存&#xff0c;断电数据丢失 多体并行…

C++ 运算符重载详解

本篇内容来源于对c课堂上学习内容的记录 通过定义函数实现任意数据类型的运算 假设我们定义了一个复数类&#xff0c;想要实现两个复数的相加肯定不能直接使用“”运算符&#xff0c;我们可以通过自定义一个函数来实现这个功能&#xff1a; #include <iostream> using…

宠物信息服务预约小程序的效果如何

宠物的作用越来越重要&#xff0c;因此铲屎官们对自己爱宠的照顾也是加倍提升&#xff0c;而市场围绕宠物展开的细分服务近些年来逐渐增多&#xff0c;且市场规模快速增长。涉及之广&#xff0c;涵盖宠物衣食住行、医疗、美容、婚丧嫁娶等&#xff0c;各品牌争相抢夺客户及抢占…

代码随想录算法训练营|五十六天

回文子串 647. 回文子串 - 力扣&#xff08;LeetCode&#xff09; dp含义&#xff1a;表示区间内[i,j]是否有回文子串&#xff0c;有true&#xff0c;没有false。 递推公式&#xff1a;当s[i]和s[j]不相等&#xff0c;false&#xff1b;相等时&#xff0c;情况一&#xff0c;…

中国电影票房排行数据爬取及分析可视化

大家好&#xff0c;我是带我去滑雪&#xff01; 对中国电影票房排行数据的爬取和分析可视化具有多方面的用处&#xff1a;例如了解电影市场的历史趋势&#xff0c;包括不同类型电影的受欢迎程度、票房的季节性波动。识别观众对于不同类型电影的偏好&#xff0c;为电影制片方提供…

高效背单词——单词APP安利

大英赛&#xff0c;CET四六级&#xff0c;以及考研英语&#xff0c;都在不远的未来再度来临&#xff0c;年复一年的考试不曾停息&#xff0c;想要取得好成绩&#xff0c;需要我们的重视并赋予相应的努力。对于应试英语&#xff0c;词汇量是不可忽略的硬性要求。相比于传统默写&…

快速集成Skywalking 9(Windows系统、JavaAgent、Logback)

目录 一、Skywalking简介二、下载Skywalking服务端三、安装Skywalking服务端3.1 解压安装包3.2 启动Skywalking 四、关于Skywalking服务端更多配置五、Java应用集成skywalking-agent.jar5.1 下载SkyWalking Java Agent5.2 集成JavaAgent5.3 Logback集成Skywalking5.4 集成效果 …

flutter web 中嵌入一个html

介绍 flutter web 支持使用 HtmlElementView嵌入html import dart:html; import dart:ui as ui; import package:flutter/cupertino.dart;class WebWidget extends StatelessWidget {const WebWidget({super.key});overrideWidget build(BuildContext context) {DivElement fr…

【diffuser系列】ControlNet

ControlNet: TL;DRControl TypeStableDiffusionControlNetPipeline1. Canny ControlNet1.1 模型与数据加载1.2 模型推理1.3 DreamBooth微调 2. Pose ControlNet2.1 数据和模型加载2.2 模型推理 ControlNet: TL;DR ControlNet 是在 Lvmin Zhang 和 Maneesh Agrawala 的 Adding …

麦克风阵列入门

文章引注&#xff1a; http://t.csdnimg.cn/QP7uC 一、麦克风阵列的定义 所谓麦克风阵列其实就是一个声音采集的系统&#xff0c;该系统使用多个麦克风采集来自于不同空间方向的声音。麦克风按照指定要求排列后&#xff0c;加上相应的算法&#xff08;排列算法&#xff09;就可…

漫谈广告机制设计 | 万剑归宗:聊聊广告机制设计与收入提升的秘密(2)

书接上文漫谈广告机制设计 | 万剑归宗&#xff1a;聊聊广告机制设计与收入提升的秘密&#xff08;1&#xff09;&#xff0c;我们谈到流量作为一种有限资源&#xff0c;其分配方式&#xff08;或者交易方式&#xff09;也经历了几个阶段&#xff1a;第一个是谈判定价阶段&#…

线性方程组

线性方程组 设存在线性方程组 { a 1 , 1 x 1 a 1 , 2 x 2 ⋯ a 1 , n x n b 1 a 2 , 1 x 1 a 2 , 2 x 2 ⋯ a 2 , n x n b 2 ⋮ ⋮ a m , 1 x 1 a m , 2 x 2 ⋯ a m , n x n b m \left.\left\{\begin{array}{l}a_{1,1}x_1a_{1,2}x_2\cdotsa_{1,n}x_nb_1\\a_{2,1}…

linux查看资源占用情况常用命令

1. 查看 CPU 使用情况&#xff1a; top这个命令会显示系统中当前活动进程的实时信息&#xff0c;包括 CPU 使用率、内存使用率等。按 q 键退出。 2. 查看内存使用情况&#xff1a; free -m这个命令显示系统内存的使用情况&#xff0c;以兆字节&#xff08;MB&#xff09;为…

【预处理详解】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 1. 预定义符号 2. #define定义常量 3. #define定义宏 4. 带有副作用的宏参数 5. 宏替换的规则 6. 宏函数的对比 7. #和## 7.1 #运算符 7.2 ## 运算符 8. 命名约定 …