Swin Transformer

Swin Transformer

简介

image-20230321183426196

  • 下采样的层级设计,能够逐渐增大感受野。
  • 采用window进行注意力计算,极大降低了内存消耗,避免了整张图像尺寸大小的qkv矩阵
  • 滑窗操作包括不重叠的 local window,和重叠的 cross-window。不重叠的local windows将注意力计算限制在一个窗口(window size固定),而cross-windows则让不同窗口之间信息可以进行关联,实现了信息的交互。

整体架构

930f1a33661f56ef6e4bb0bab3062769_3_Figure_3

  1. Patch Partition结构:将图像切分重排,并进行embedding
  2. Patch Merging结构:下采样方法,实现层次化结构
  3. Swin Transformer Block:一个W-MSA ,一个SW-MSA,也即是一个window-多头注意力机制和一个shift-windows多头注意力机制,实现将自注意力机制限制在一个windows中进行计算,同时,通过shift-window解决限制在一个windows中后,不同windows之间无信息共享的问题。

Patch Embedding

在图像切分重排中,采用的是使用patch size大小的conv2d进行实现

class PatchEmbed(nn.Module):r""" Image to Patch Embedding图像切分重排Args:img_size (int): Image size.  Default: 224.patch_size (int): Patch token size. Default: 4.in_chans (int): Number of input image channels. Default: 3.embed_dim (int): Number of linear projection output channels. Default: 96.norm_layer (nn.Module, optional): Normalization layer. Default: None"""def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):super().__init__()img_size = to_2tuple(img_size)patch_size = to_2tuple(patch_size)patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]self.img_size = img_sizeself.patch_size = patch_sizeself.patches_resolution = patches_resolutionself.num_patches = patches_resolution[0] * patches_resolution[1]self.in_chans = in_chansself.embed_dim = embed_dimself.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)if norm_layer is not None:self.norm = norm_layer(embed_dim)else:self.norm = Nonedef forward(self, x):B, C, H, W = x.shape# FIXME look at relaxing size constraintsassert H == self.img_size[0] and W == self.img_size[1], \f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."x = self.proj(x).flatten(2).transpose(1, 2)  # B Ph*Pw Cif self.norm is not None:x = self.norm(x)return x

Patch Merging

class PatchMerging(nn.Module):r""" Patch Merging Layer.Args:input_resolution (tuple[int]): Resolution of input feature.dim (int): Number of input channels.norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm"""def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):super().__init__()self.input_resolution = input_resolutionself.dim = dimself.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)self.norm = norm_layer(4 * dim)def forward(self, x):"""x: B, H*W, C"""H, W = self.input_resolutionB, L, C = x.shapeassert L == H * W, "input feature has wrong size"assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."x = x.view(B, H, W, C)x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 Cx1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 Cx2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 Cx3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 Cx = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*Cx = x.view(B, -1, 4 * C)  # B H/2*W/2 4*Cx = self.norm(x)x = self.reduction(x)return x

img

SW-MSA设计

如下所示,w-msa mask避免窗口5和窗口3进行相似度计算,通过mask只在窗口内部进行计算。

通过对特征图移位,并给Attention设置mask来间接实现的。能在保持原有的window个数下,最后的计算结果等价

2023-11-18_10-20-26

2023-11-18_10-23-41

Window Attention

A t t e n t i o n ( Q , K , V ) = S o f t m a x ( Q K T d + B ) V Attention(Q,K,V)=Softmax(\frac{QK^T}{\sqrt{d}}+B)V Attention(Q,K,V)=Softmax(d QKT+B)V

相对位置编码

coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)

img

对于相对位置编码,在2维坐标系中,当偏移从0开始时,(2,1)和(1,2)相对(0,0)的位置编码是不同的,而转为1维坐标后,却是相同数值,为了解决这个问题,采用对x坐标2 * self.window_size[1] - 1操作,从而进行区分。而该相对位置编码需要2 * self.window_size[1] - 1编码数值。

A Survey of Transformers

图解Swin Transformer - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197580.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode34.排序数组中查找元素第一个和最后一个位置两种解题方法(超详细)

34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)https://leetcode.cn/problems/find-first-and-last-position-of-element-in-sorted-array/description/?envTypelist&envIdZCa7r67M这道题,读者可能会说这道题有什么好…

云计算(Docker)

Docker简介 Docker 是一个开源的应用容器引擎,基于 Go 语言,并遵从 Apache2.0 协议开源。它可以让开发者打包应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。Docker 可用于开发…

详解ssh远程登录服务

华子目录 简介概念功能 分类文字接口图形接口 文字接口ssh连接服务器浅浅介绍一下加密技术凯撒加密加密分类对称加密非对称加密非对称加密方法(也叫公钥加密) ssh两大类认证方式:连接加密技术简介密钥解析 ssh工作过程版本协商阶段密钥和算法…

程序员如何做事更细致?

最近在工作中老是犯一些小错误,哦,当然也不是最近了,其实我一直是个马虎的人,我很讨厌做一些细活,因为这会让我反复改动多次在会成功,而平时的代码由于有debug,即便出错了,再改回来即…

基于STC12C5A60S2系列1T 8051单片的模数芯片ADC0809实现模数转换应用

基于STC12C5A60S2系列1T 8051单片的模数芯片ADC0809实现模数转换应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍模数芯片ADC0809介绍通过模数芯片ADC0809把电压模…

Java Swing商品信息查询系统

内容要求 1) 本次程序设计是专门针对 Java 课程的,要求使用 Java 语言进行具有一定代码量的程序开发。程序的设计要结合一定的算法,在进行代码编写前要能够设计好自己的算法。 2)本次程序设计涉及到 Java 的基本语法,即课堂上所…

redis高级案列case

案列一 双写一致性 案例二 双锁策略 package com.redis.redis01.service;import com.redis.redis01.bean.RedisBs; import com.redis.redis01.mapper.RedisBsMapper; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.annotation.Autowired; imp…

基于STC12C5A60S2系列1T 8051单片机的模数芯片ADC0832实现模数转换应用

基于STC12C5A60S2系列1T 8051单片的模数芯片ADC0832实现模数转换应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍模数芯片ADC0832介绍通过模数芯片ADC0832把电压模…

【python】OpenCV—Rectangle, Circle, Selective Search(1.2)

文章目录 1 画框画圈1.1 画矩形框1.2 画圆 / 点1.3 椭圆 2 Selective Search3 Resize 1 画框画圈 1.1 画矩形框 # Copy the image img_rgb_copy img_rgb.copy()# Draw a rectangle cv2.rectangle(img_rgb_copy, pt1 (405, 90), pt2 (740, 510),color (255, 0, 0), thickne…

4种经典的限流算法

0、基础知识 1000毫秒内,允许2个请求,其他请求全部拒绝。 不拒绝就可能往db打请求,把db干爆~ interval 1000 rate 2; 一、固定窗口限流 固定窗口限流算法(Fixed Window Rate Limiting Algorithm)是…

文件传输客户端 SecureFX mac中文版支持多种协议

SecureFX mac是一款功能强大的文件传输客户端,可在 Mac 操作系统上使用。它由 VanDyke Software 公司开发,旨在为用户提供安全、可靠、高效的文件传输服务。 SecureFX 支持多种协议,包括 SFTP、SCP、FTP、FTP over SSL/TLS 和 HTTP/S。它使用…

支持4KHz回报还能无线充电,简约不简单的雷柏VT3S游戏鼠标上手

这两年国产鼠标的表现很让人惊喜,不仅外观做工越来越精细,配置也越来越强大,当然价格依然亲民。现在很容易找到一款搭载高端传感器、响应速度快、电池续航时间长,并且还支持无线充电的全能型鼠标。 我之前用雷柏的鼠标比较多&…

Transformer ZOO

Natural Language Processing Transformer:Attention is all you need URL(46589)2017.6 提出Attention机制可以替代卷积框架。引入Position Encoding,用来为序列添加前后文关系。注意力机制中包含了全局信息自注意力机制在建模序列数据中的长期依赖关系方面表现出…

vue项目本地开发完成后部署到服务器后报404

vue项目本地开发完成后部署到服务器后报404是什么原因呢? 一、如何部署 前后端分离开发模式下,前后端是独立布署的,前端只需要将最后的构建物上传至目标服务器的web容器指定的静态目录下即可 我们知道vue项目在构建后,是生成一系…

统信UOS通过源码安装软件提示“configure: error: cannot run C compiled programs.”错误

1. 问题说明 使用源码的方式安装git软件,安装过程中出现两个错误。 编译错误“cannot run C compiled programs” XC:~/Downloads/git-2.42.1$ ./configure --prefix/home/software/git-2.42.1 configure: Setting lib to lib (the default) configure: Will try…

计算机组成原理-双端口RAM和多模块存储器

文章目录 存取周期总览双端口RAM多体并行存储器低地址交叉编址有多少个存储体合适(体号)多模块存储器(多体存储器)总结实际场景 存取周期 总览 双端口RAM RAM:用于主存或高速缓存,断电数据丢失 多体并行…

C++ 运算符重载详解

本篇内容来源于对c课堂上学习内容的记录 通过定义函数实现任意数据类型的运算 假设我们定义了一个复数类&#xff0c;想要实现两个复数的相加肯定不能直接使用“”运算符&#xff0c;我们可以通过自定义一个函数来实现这个功能&#xff1a; #include <iostream> using…

宠物信息服务预约小程序的效果如何

宠物的作用越来越重要&#xff0c;因此铲屎官们对自己爱宠的照顾也是加倍提升&#xff0c;而市场围绕宠物展开的细分服务近些年来逐渐增多&#xff0c;且市场规模快速增长。涉及之广&#xff0c;涵盖宠物衣食住行、医疗、美容、婚丧嫁娶等&#xff0c;各品牌争相抢夺客户及抢占…

代码随想录算法训练营|五十六天

回文子串 647. 回文子串 - 力扣&#xff08;LeetCode&#xff09; dp含义&#xff1a;表示区间内[i,j]是否有回文子串&#xff0c;有true&#xff0c;没有false。 递推公式&#xff1a;当s[i]和s[j]不相等&#xff0c;false&#xff1b;相等时&#xff0c;情况一&#xff0c;…

中国电影票房排行数据爬取及分析可视化

大家好&#xff0c;我是带我去滑雪&#xff01; 对中国电影票房排行数据的爬取和分析可视化具有多方面的用处&#xff1a;例如了解电影市场的历史趋势&#xff0c;包括不同类型电影的受欢迎程度、票房的季节性波动。识别观众对于不同类型电影的偏好&#xff0c;为电影制片方提供…