【数据结构&C++】二叉平衡搜索树-AVL树(25)

前言

大家好吖,欢迎来到 YY 滴C++系列 ,热烈欢迎! 本章主要内容面向接触过C++的老铁
主要内容含:
在这里插入图片描述

欢迎订阅 YY滴C++专栏!更多干货持续更新!以下是传送门!

目录

  • 一.AVL树的概念
  • 二.AVL树节点的定义(代码演示)
  • 三.Avl树的基本操作:插入
  • 四.AVL树的核心操作:旋转
    • 【1】新节点插入较高右子树的右侧---右右:左单旋
    • 【2】新节点插入较高左子树的左侧—左左:右单旋
    • 【3】新节点插入较高左子树的右侧---左右:先左单旋再右单旋
    • 【4】新节点插入较高右子树的左侧---右左:先右单旋再左单旋
  • 五.AVL树的验证
      • 1. 验证其为二叉搜索树
      • 2. 验证其为平衡树
  • 六.AVL树的性能&引入红黑树
  • 七.AVL树的完整代码

一.AVL树的概念

  • 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证 每个结点的左右子树高度之差的绝对值不超过1 (需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
  • 平衡因子是-1,左比右高1;平衡因子是1,右比左高1;平衡因子是0,左右一样高
  • 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
    1. 它的左右子树都是AVL树
    2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
  • 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在
    O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。

二.AVL树节点的定义(代码演示)

  • 除了基本的左右孩子节点与数据外,还需要引入平衡因子
  • 由于平衡因子取决于左右子树相对高度,所以节点本身 要能够返回父亲节点 ——> 要设置指向父亲节点的指针
  • 注意AVL树节点是三叉链
template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的父亲节点T _data;int _bf;                  // 该节点的平衡因子
};

三.Avl树的基本操作:插入

  • AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步:
    1. 按照二叉搜索树的方式插入新节点
    2. 调整节点的平衡因子
  • AVL树的插入过程:
  • 与二叉搜索树同理,二叉搜索树博客传送门:https://blog.csdn.net/YYDsis/article/details/134374001?spm=1001.2014.3001.5501
  • 平衡因子的变化步骤:
  1. 新增在左,parent平衡因子减减
  2. 新增在右,parent平衡因子加加
  3. 平衡因子==0,高度不变,直接break
  4. 平衡因子==1/-1,高度改变-> 会影响祖先 -> 需要继续沿着到根节点root的路径向上更新
  5. 平衡因子==2/-2,高度改变& 树不再平衡 ->会影响祖先->需要对parent所在子树进行 旋转 操作,让其平衡 (旋转部分放在part4中详解)
  6. 向上更新,直到根节点(根节点parent==0)
template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}//1. 按照二叉搜索树的方式插入新节点Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//2. 调整节点的平衡因子while (parent)//向上更新,直到根节点(根节点parent==0){if (cur == parent->_left)// 1.新增在左,parent平衡因子减减{parent->_bf--;}else // if (cur == parent->_right){parent->_bf++;//2.新增在右,parent平衡因子加加}if (parent->_bf == 0)//3.平衡因子==0,高度不变,直接break{// 更新结束break;}//4.平衡因子==1/-1,高度改变-> 会影响祖先 -> 需要继续沿着到根节点root的路径向上更新else if (parent->_bf == 1 || parent->_bf == -1){// 继续往上更新cur = parent;parent = parent->_parent;}//平衡因子==2/-2,高度改变& 树不再平衡 ->会影响祖先->//需要对parent所在子树进行 旋转 操作,让其平衡else if (parent->_bf == 2 || parent->_bf == -2){// 子树不平衡了,需要旋转     (旋转部分为何这么设计放在part4中详解)if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}break;}else{assert(false);}}return true;}

四.AVL树的核心操作:旋转

  • 根据part3中avl树的基本操作"插入",以下情况会出现旋转
  • 平衡因子==2/-2,高度改变& 树不再平衡 ->会影响祖先->需要对parent所在子树进行 旋转 操作,让其平衡 (旋转部分放在part4中详解)
  • 所以一共有四种情况分别如下图所示:
  • 旋转要注意以下两点:
    1. 保持这颗树还是搜索树
    2. 变成平衡树&降低其高度

【1】新节点插入较高右子树的右侧—右右:左单旋

  • 分析:
  • 如下图所示,新节点插入较高右子树的右侧时候,整体会发生“向左的单旋”

在这里插入图片描述

  • 核心操作:
    cur->_right = parent;
    parent->_parent = cur;
  • 代码展示:
void RotateL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;Node* ppnode = parent->_parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}parent->_bf = cur->_bf = 0;}

【2】新节点插入较高左子树的左侧—左左:右单旋

【3】新节点插入较高左子树的右侧—左右:先左单旋再右单旋

【4】新节点插入较高右子树的左侧—右左:先右单旋再左单旋

五.AVL树的验证

1. 验证其为二叉搜索树

  • 如果其通过 中序遍历 可得到一个有序的序列,就说明为二叉搜索树

2. 验证其为平衡树

  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确

六.AVL树的性能&引入红黑树

  • AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这
    样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操
    作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,
    有可能一直要让旋转持续到根的位置。
    因此:如果需要一种查询高效且有序的数据结构,而且数
    据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。 因此需要
    引入红黑树,传送门如下所示:

  • 红黑树博客传送门:

七.AVL树的完整代码

#pragma once#include<iostream>
#include<assert.h>
using namespace std;template<class K, class V>
struct AVLTreeNode
{pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf;  // balance factorAVLTreeNode(const pair<K, V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// ... 控制平衡// 更新平衡因子while (parent){if (cur == parent->_left){parent->_bf--;}else // if (cur == parent->_right){parent->_bf++;}if (parent->_bf == 0){// 更新结束break;}else if (parent->_bf == 1 || parent->_bf == -1){// 继续往上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// 子树不平衡了,需要旋转if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}break;}else{assert(false);}}return true;}void RotateL(Node* parent){++_rotateCount;Node* cur = parent->_right;Node* curleft = cur->_left;parent->_right = curleft;if (curleft){curleft->_parent = parent;}cur->_left = parent;Node* ppnode = parent->_parent;parent->_parent = cur;if (parent == _root){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}parent->_bf = cur->_bf = 0;}void RotateR(Node* parent){++_rotateCount;Node* cur = parent->_left;Node* curright = cur->_right;parent->_left = curright;if (curright)curright->_parent = parent;Node* ppnode = parent->_parent;cur->_right = parent;parent->_parent = cur;if (ppnode == nullptr){_root = cur;cur->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = cur;}else{ppnode->_right = cur;}cur->_parent = ppnode;}parent->_bf = cur->_bf = 0;}void RotateRL(Node* parent){Node* cur = parent->_right;Node* curleft = cur->_left;int bf = curleft->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){cur->_bf = 0;curleft->_bf = 0;parent->_bf = 0;}else if (bf == 1){cur->_bf = 0;curleft->_bf = 0;parent->_bf = -1;}else if (bf == -1){cur->_bf = 1;curleft->_bf = 0;parent->_bf = 0;}else{assert(false);}}void RotateLR(Node* parent){Node* cur = parent->_left;Node* curright = cur->_right;int bf = curright->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){parent->_bf = 0;cur->_bf = 0;curright->_bf = 0;}else if (bf == -1){parent->_bf = 1;cur->_bf = 0;curright->_bf = 0;}else if (bf == 1){parent->_bf = 0;cur->_bf = -1;curright->_bf = 0;}}int Height(){return Height(_root);}int Height(Node* root){if (root == nullptr)return 0;int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}bool IsBalance(){return IsBalance(_root);}bool IsBalance(Node* root){if (root == nullptr)return true;int leftHight = Height(root->_left);int rightHight = Height(root->_right);if (rightHight - leftHight != root->_bf){cout << "平衡因子异常:" <<root->_kv.first<<"->"<< root->_bf << endl;return false;}return abs(rightHight - leftHight) < 2&& IsBalance(root->_left)&& IsBalance(root->_right);}private:Node* _root = nullptr;public:int _rotateCount = 0;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/197856.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MIB 6.S081 System calls(1)using gdb

难度:easy In many cases, print statements will be sufficient to debug your kernel, but sometimes being able to single step through some assembly code or inspecting the variables on the stack is helpful. To learn more about how to run GDB and the common iss…

qemu + busybox + 内核实验环境搭建(2023-11)

主要是参考网上的例子&#xff0c;网上的一些例子可能用的busybox 老旧&#xff0c;编译各种问题&#xff0c;以及rootfs hda的方式或者ramfs的方式。可能有些概念还是不清楚&#xff0c;以下是最终完成测试成功的案例。 下载kernel https://cdn.kernel.org/pub/linux/kernel…

坐标系下的运动旋量转换

坐标系下的运动旋量转换 文章目录 坐标系下的运动旋量转换前言一、运动旋量物体运动旋量空间运动旋量 二、伴随变换矩阵三、坐标系下运动旋量的转换四、力旋量五、总结参考资料 前言 对于刚体而言&#xff0c;其角速度可以写为 ω ^ θ ˙ \hat {\omega} \dot \theta ω^θ˙&…

【Synopsys Bug记录】DC综合报错(显示warning:Unable to resolve reference)

文章目录 一、问题描述二、问题所在三、问题解决总结4.1 Warning的产生4.2 代码风格4.3 网表正确性 一、问题描述 在综合一个SOC时&#xff0c;发现综合后的门级网表文件缺少了apb系统下的子模块的网表。该SOC已经成功在FPGA上运行了&#xff0c;按理说在设计上是没有问题的。在…

mac无法向移动硬盘拷贝文件怎么解决?不能读取移动硬盘文件怎么解决

有时候我们在使用mac的时候&#xff0c;会遇到一些问题&#xff0c;比如无法向移动硬盘拷贝文件或者不能读取移动硬盘文件。这些问题会给我们的工作和生活带来不便&#xff0c;所以我们需要找到原因和解决办法。本文将为你介绍mac无法向移动硬盘拷贝文件怎么回事&#xff0c;以…

AR贴纸特效SDK,无缝贴合的虚拟体验

增强现实&#xff08;AR&#xff09;技术已经成为了企业和个人开发者的新宠。它通过将虚拟元素与现实世界相结合&#xff0c;为用户提供了一种全新的交互体验。然而&#xff0c;如何将AR贴纸完美贴合在人脸的面部&#xff0c;同时支持多张人脸的检测和标点及特效添加&#xff0…

解决Kibana初始化失败报错: Unable to connect to Elasticsearch

现象&#xff1a; 原因&#xff1a; docker run生成容器的时候&#xff0c;指定elastic server时指向了localhost 为什么不能是localhost, 因为这个localhost指向的是容器本身的网络&#xff0c;而elastic用的是物理网络&#xff0c;两个网络是隔离的&#xff0c;所以如果kiba…

MySQL数据库索引以及使用唯一索引实现幂等性

&#x1f4d1;前言 本文主要是MySQL数据库索引以及使用唯一索引实现幂等性的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是青衿&#x1f947; ☁️博客首页&#xff1a;CSDN主页放风讲故事 &#x1f30…

【Go入门】 Go搭建一个Web服务器

【Go入门】 Go搭建一个Web服务器 前面小节已经介绍了Web是基于http协议的一个服务&#xff0c;Go语言里面提供了一个完善的net/http包&#xff0c;通过http包可以很方便的搭建起来一个可以运行的Web服务。同时使用这个包能很简单地对Web的路由&#xff0c;静态文件&#xff0c…

YOLOv5 学习记录

文章目录 整体概况数据增强与前处理自适应Anchor的计算Lettorbox 架构SiLU激活函数YOLOv5改进点SSPF 模块 正负样本匹配损失函数 整体概况 YOLOv5 是一个基于 Anchor 的单阶段目标检测&#xff0c;其主要分为以下 5 个阶段&#xff1a; 1、输入端&#xff1a;Mosaic 数据增强、…

【Linux网络】典型NAS存储方式:NFS网络共享存储服务

一、关于存储的分类 二、NFS的介绍 nfs的相关介绍&#xff1a; 1、原理 2、nfs的特点 3、nfs软件学习 4、共享配置文件的书写格式 关于权限&#xff0c;学习&#xff1a; 5、关于命令的学习&#xff1a; 三、实验操作 1、nfs默认共享权限&#xff08;服务端设置&#…

zookeeper的安装部署

目录 简介 Zookeeper架构设计及原理 1.Zookeeper定义 2.Zookeeper的特点 3.Zookeeper的基本架构 4.Zookeeper的工作原理 5.Zookeeper的数据模型 &#xff08;1&#xff09;临时节点 &#xff08;2&#xff09;顺序节点 &#xff08;3&#xff09;观察机制 Zookeeper集…

Web安全研究(五)

Automated WebAssembly Function Purpose Identification With Semantics-Aware Analysis WWW23 文章结构 introbackgroundsystem design abstraction genapplying abstractionsclassifier data collection and handling data acquisitionstatistics of collected datamodule-…

hypermesh常用快捷键

#hypermesh常用快捷键

2024年山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题-B卷

2024年山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题-B卷 2024年山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题-B卷A模块基础设施设置/安全加固&#xff08;200分&#xff09;A-1&#xff1a;登录安全加固&#xff08;Windows, Linux&#xff09;A-2&#…

DrugMAP: molecular atlas and pharma-information of all drugs学习

DrugMAP&#xff1a;所有药物的分子图谱和制药信息 - PMC (nih.gov) DrugMAP: the molecular atlas and pharma-information of drugs (idrblab.net) 构建了一个描述药物分子图谱和药物信息的新数据库&#xff08;DrugMAP&#xff09;。它提供了>30 000种药物/候选药物的相…

蓝桥杯每日一题2023.11.18

题目描述 蓝桥杯大赛历届真题 - C 语言 B 组 - 蓝桥云课 (lanqiao.cn) 题目分析 本题使用搜索&#xff0c;将每一个格子进行初始赋值方便确定是否为相邻的数&#xff0c;将空出的两个格子首先当作已经填好数值为100&#xff0c;此时从第一个格子右边的格子开始搜索&#xff…

python urllib open 头部信息错误

header 有些字符在 lighttpd server 中无法正常解析,需要转换 quteo 可以转换 就跨平台而言,Rust 和 python 一样优秀,看了在stm32 上使用 Rust 进行编程,从一定程度上,而言&#xff0c;稳定和安全性要比C 开发的好的多,说出来可能不信&#xff0c;在单片机上是可以对空指针进行…

map与set的封装

目录 红黑树的结点 与 红黑树的迭代器 红黑树的实现&#xff1a; 迭代器&#xff1a; ​编辑 红黑树的查找&#xff1a; 红黑树的插入&#xff1a; ​编辑 检查红色结点&#xff1a;​编辑红黑树的左旋 ​编辑红黑树的右旋 ​编辑红黑树的双旋 Map的封装 ​编辑set的…

AI实践与学习1_Milvus向量数据库实践与原理分析

前言 随着NLP预训练模型&#xff08;大模型&#xff09;以及多模态研究领域的发展&#xff0c;向量数据库被使用的越来越多。 在XOP亿级题库业务背景下&#xff0c;对于试题召回搜索单单靠着ES集群已经出现性能瓶颈&#xff0c;因此需要预研其他技术方案提高试题搜索召回率。…