单张图像3D重建:原理与PyTorch实现

近年来,深度学习(DL)在解决图像分类、目标检测、语义分割等 2D 图像任务方面表现出了出色的能力。DL 也不例外,在将其应用于 3D 图形问题方面也取得了巨大进展。 在这篇文章中,我们将探讨最近将深度学习扩展到单图像 3D 重建任务的尝试,这是 3D 计算机图形领域最重要和最深刻的挑战之一。

 在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器

1、单图像3D重建任务

单个图像只是 3D 对象到 2D 平面的投影,来自高维空间的一些数据必然在低维表示中丢失。 因此,从单视图 2D 图像来看,永远不会有足够的数据来构造其 3D 组件。

因此,从单个 2D 图像创建 3D 感知的方法需要先了解 3D 形状本身。

在 2D 深度学习中,卷积自动编码器是学习输入图像的压缩表示的非常有效的方法。 将这种架构扩展到学习紧凑的形状知识是将深度学习应用于 3D 数据的最有前途的方法。

2、3D 数据的表示

与只有一种计算机格式(像素)通用表示形式的 2D 图像不同,有多种方法可以用数字格式表示 3D 数据。 它们各有优缺点,因此数据表示的选择直接影响可以使用的方法。

2.1 光栅化形式(体素网格)

光栅法表示的3D模型可以直接应用CNN。

每个蓝色框都是一个体素,大部分体素是空的。

体素(voxel)是体积像素的缩写,是空间网格像素到体积网格体素的直接扩展。 每个体素的局部性共同定义了该体积数据的独特结构,因此 ConvNet 的局部性假设在体积格式中仍然成立。

体素表示的密度低


然而,这种表示是稀疏且浪费的。 有用体素的密度随着分辨率的增加而降低。

  • 优点:可以直接应用CNN从2D到3D表示。
  • 缺点:浪费表示,细节和资源(计算、内存)之间的高度权衡。

2.2 几何形式

几何形式表达的3D模型不能直接应用CNN。

  • 多边形网格:是顶点、边和面的集合,定义了物体的 3 维表面。 它可以以相当紧凑的表示形式捕获粒度细节。
  • 点云:3D 坐标 (x, y, z) 中的点的集合,这些点一起形成类似于 3 维物体形状的云。 点的集合越大,获得的细节就越多。 不同顺序的同一组点仍然表示相同的 3D 对象。例如:
# point_cloud1 and point_cloud2 represent the same 3D structure
# even though they are represented differently in memory
point_cloud1 = [(x1, y1, z1), (x2, y2, z2),..., (xn, yn, zn)]
point_cloud2 = [(x2, y2, z2), (x1, y1, z1),..., (xn, yn, zn)]

几何表示法的优缺点如下:

  • 优点:表现紧凑,注重3D物体的细节表面。
  • 缺点:不能直接应用CNN。

3、我们的实现方法

我们将展示一种结合了点云紧凑表示的优点但使用传统的 2D ConvNet 来学习先验形状知识的实现。

3.1 2D 结构生成器

我们将构建一个标准的 2D CNN 结构生成器,用于学习对象的先验形状知识。

体素方法并不受欢迎,因为它效率低下,而且不可能直接用 CNN 学习点云。 因此,我们将学习从单个图像到点云的多个 2D 投影的映射,视点处的 2D 投影定义为: 2D projection == 3D coordinates (x,y,z) + binary mask (m) 。

  • 输入:单个 RGB 图像
  • 输出:预定视点的 2D 投影

代码如下:

#--------- Pytorch pseudo-code for Structure Generator ---------#
class Structure_Generator(nn.Module):# contains two module in sequence, an encoder and a decoderdef __init__(self):self.encoder = Encoder()self.decoder = Decoder()def forward(self, RGB_image):# Encoder takes in one RGB image and # output an encoded deep shape-embeddingshape_embedding = self.encoder(RGB_image)# Decoder takes the encoded values and output  # multiples 2D projection (XYZ + mask)XYZ, maskLogit = self.decoder(shape_embedding)return XYZ, maskLogit

3.2 点云融合

将预测的 2D 投影融合到原生 3D 点云数据中。 这是可能的,因为这些预测的观点是固定的并且是预先已知的。

  • 输入:预定视点的 2D 投影。
  • 输出:点云

3.3 伪渲染器

我们推断,如果从预测的 2D 投影融合的点云有任何好处,那么如果我们从新的视点渲染不同的 2D 投影,它也应该类似于地面实况 3D 模型的投影。

  • 输入:点云
  • 输出:新视点的深度图像

3.4 训练动态

将这 3 个模块组合在一起,我们获得了端到端模型,该模型学习仅使用 2D 卷积结构生成器从一张 2D 图像生成紧凑的点云表示。

由 2D 卷积结构生成器、点云融合和伪渲染模块组成的完整架构

这个模型的巧妙技巧是让融合+伪渲染模块纯粹可微,几何推理:

  • 几何代数意味着没有可学习的参数,使模型尺寸更小并且更容易训练。
  • 可微分意味着我们可以通过它反向传播梯度,从而可以使用 2D 投影的损失来学习生成 3D 点云。

代码如下:

# --------- Pytorch pseudo-code for training loop ----------#
# Create 2D Conv Structure generator
model = Structure_Generator()
# only need to learn the 2D structure optimizer
optimizer = optim.SGD(model.parameters())
# 2D projections from predetermined viewpoints
XYZ, maskLogit = model(RGB_images)
# fused point cloud
#fuseTrans is predetermined viewpoints info
XYZid, ML = fuse3D(XYZ, maskLogit, fuseTrans)
# Render new depth images at novel viewpoints
# renderTrans is novel viewpoints info
newDepth, newMaskLogit, collision = render2D(XYZid, ML, renderTrans)
# Compute loss between novel view and ground truth
loss_depth = L1Loss()(newDepth, GTDepth)
loss_mask = BCEWithLogitLoss()(newMaskLogit, GTMask)
loss_total = loss_depth + loss_mask
# Back-propagation to update Structure Generator
loss_total.backward()
optimizer.step()

3.5 实验结果

来自地面实况 3D 模型的新深度图像与来自学习点云模型的渲染深度图像的比较:

从一张 RBG 图像 → 3D 点云:

有了详细的点云表示,就可以使用 MeshLab 将其转换为其他表示,例如与 3D 打印机兼容的体素或多边形网格。


原文链接:单图像3D重建原理实现 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/198157.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Transformer中WordPiece/BPE等不同编码方式详解以及优缺点

❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…

C++基础从0到1入门编程(三)

系统学习C 方便自己日后复习,错误的地方希望积极指正 往期文章: C基础从0到1入门编程(一) C基础从0到1入门编程(二) 参考视频: 1.黑马程序员匠心之作|C教程从0到1入门编程,学习编程不再难 2.系统…

ubuntu下载conda

系统:Ubuntu18.04 (1)下载安装包 wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.11-Linux-x86_64.sh 报错错误 403:Forbidden 解决方法 wget -U NoSuchBrowser/1.0 https://mirrors.tuna.tsingh…

Jmeter做接口测试

1.Jmeter的安装以及环境变量的配置 Jmeter是基于java语法开发的接口测试以及性能测试的工具。 jdk:17 (最新的Jeknins,只能支持到17) jmeter:5.6 官网:http://jmeter.apache.org/download_jmeter.cgi 认识JMeter的目录&#xff1…

【Web】Ctfshow SSRF刷题记录1

核心代码解读 <?php $url$_POST[url]; $chcurl_init($url); curl_setopt($ch, CURLOPT_HEADER, 0); curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1); $resultcurl_exec($ch); curl_close($ch); ?> curl_init()&#xff1a;初始curl会话 curl_setopt()&#xff1a;会…

【力扣面试经典150题】(链表)K 个一组翻转链表

题目描述 力扣原文链接 给你链表的头节点 head &#xff0c;每 k 个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k 是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#xff0c;那么请将最后剩余的节点保持原有顺序。 你不能只…

【Python数据结构与算法】——(线性结构)精选好题分享,不挂科必看系列

&#x1f308;个人主页: Aileen_0v0&#x1f525;系列专栏:<<Python数据结构与算法专栏>>&#x1f4ab;个人格言:"没有罗马,那就自己创造罗马~" 时间复杂度大小比较 1.time complexity of algorithm A is O(n^3) while algorithm B is O(2^n). Which o…

CentOS 7 安装CMake指定版本3.21.2

背景&#xff1a;今天在CentOS 7 电脑上安装C 日志框架SpdLog-1.12.0&#xff0c;提示如下错误信息&#xff1a; [rootlocalhost build]# cmake .. && make -j CMake Error at CMakeLists.txt:3 (cmake_minimum_required):CMake 3.10...3.21 or higher is required. …

OSI参考模型

目录 一. OSI参考模型的各层功能二. 网络排错三. 网络安全四. 实体、协议、服务和服务访问点SAP五. TCP IP体系结构 一. OSI参考模型的各层功能 \quad \quad \quad \quad 我们首先来看应用层实现的功能 每个字段的各种取值所代表的意思 \quad \quad 比如要保存的文件内容是ab…

DAC实验(DAC 输出三角波实验)(DAC 输出正弦波实验)

DAC 输出三角波实验 本实验我们来学习使用如何让 DAC 输出三角波&#xff0c;DAC 初始化部分还是用 DAC 输出实验 的&#xff0c;所以做本实验的前提是先学习 DAC 输出实验。 使用 DAC 输出三角波&#xff0c;通过 KEY0/KEY1 两个按键&#xff0c;控制 DAC1 的通道 1 输出两种…

论文速览 Arxiv 2023 | DMV3D: 单阶段3D生成方法

注1:本文系“最新论文速览”系列之一,致力于简洁清晰地介绍、解读最新的顶会/顶刊论文 论文速览 Arxiv 2023 | DMV3D: DENOISING MULTI-VIEW DIFFUSION USING 3D LARGE RECONSTRUCTION MODEL 使用3D大重建模型来去噪多视图扩散 论文原文:https://arxiv.org/pdf/2311.09217.pdf…

SQL SERVER 2008安装教程

SQL SERVER 2008安装教程 本篇文章介绍了安装SQL Server 2008企业版的软硬件配置要求&#xff0c;安装过程的详细步骤&#xff0c;以及需要注意的事项。 安装步骤 (1). 在安装文件setup.exe上&#xff0c;单击鼠标右键选择“以管理员的身份运行”&#xff0c;如下图所示&#…

某60区块链安全之不安全的随机数实战一

区块链安全 文章目录 区块链安全不安全的随机数实战一实验目的实验环境实验工具实验原理实验内容攻击过程分析合约源代码漏洞EXP利用 不安全的随机数实战一 实验目的 学会使用python3的web3模块 学会以太坊不安全的随机数漏洞分析及利用 实验环境 Ubuntu18.04操作机 实验工…

基于深度学习的恶意软件检测

恶意软件是指恶意软件犯罪者用来感染个人计算机或整个组织的网络的软件。 它利用目标系统漏洞&#xff0c;例如可以被劫持的合法软件&#xff08;例如浏览器或 Web 应用程序插件&#xff09;中的错误。 恶意软件渗透可能会造成灾难性的后果&#xff0c;包括数据被盗、勒索或网…

【Go学习之 go mod】gomod小白入门,在github上发布自己的项目(项目初始化、项目发布、项目版本升级等)

参考 Go语言基础之包 | 李文周的博客Go mod的使用、发布、升级 | weiGo Module如何发布v2及以上版本1.2.7. go mod命令 — 新溪-gordon V1.7.9 文档golang go 包管理工具 go mod的详细介绍-腾讯云开发者社区-腾讯云Go Mod 常见错误的原因 | walker的博客 项目案例 oceanweav…

电子学会C/C++编程等级考试2022年03月(一级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:双精度浮点数的输入输出 输入一个双精度浮点数,保留8位小数,输出这个浮点数。 时间限制:1000 内存限制:65536输入 只有一行,一个双精度浮点数。输出 一行,保留8位小数的浮点数。样例输入 3.1415926535798932样例输出 3.1…

【论文阅读】2736. 最大和查询-2023.11.17

题目&#xff1a; 2736. 最大和查询 给你两个长度为 n 、下标从 0 开始的整数数组 nums1 和 nums2 &#xff0c;另给你一个下标从 1 开始的二维数组 queries &#xff0c;其中 queries[i] [xi, yi] 。 对于第 i 个查询&#xff0c;在所有满足 nums1[j] > xi 且 nums2[j]…

Angular 由一个bug说起之二:trackBy的一点注意事项

trackBy是angualr优化项目性能的一种方法, 通过返回一个具有绑定性的唯一值, 比如id&#xff0c;手机号&#xff0c;身份证号之类的&#xff0c;来让angular能够跟踪数组的项目&#xff0c;根据数据的变化来重新生成DOM, 这样就节约了性能。 但是如果是使用ngFor循环组件&…

iTerm2+oh-my-zsh搭个Mac电脑上好用好看终端

根据苹果网站上介绍&#xff0c;bash是 macOS Mojave 及更早版本中的默认Shell&#xff0c;从 macOS Catalina 开始&#xff0c;zsh(Z shell) 是所有新建用户帐户的默认Shell。 1. 安装Oh my zsh sh -c "$(curl -fsSL https://raw.githubusercontent.com/ohmyzsh/ohmyzs…

Spring 配置

配置文件最主要的目的 : 解决硬编码的问题(代码写死) SpringBoot 的配置文件,有三种格式 1.properties 2.yaml 3.yml(是 yaml 的简写) SpringBoot 只支持三个文件 1.application.properties 2.application.yaml 3.application.yml yaml 和 yml 是一样的,学会一个就行…