【NLP 25、模型训练方式】

目录

一、按学习范式分类

1. 监督学习(Supervised Learning)

2. 无监督学习(Unsupervised Learning)

3. 半监督学习(Semi-supervised Learning)

4. 强化学习(Reinforcement Learning, RL)

5. 迁移学习(Transfer Learning)

6. 自监督学习(Self-supervised Learning)

二、按训练技术分类

1. 数据增强(Data Augmentation)

2. 正则化(Regularization)

3. 优化算法(Optimization Algorithms)

4. 模型集成(Ensemble Learning)

5. 分布式训练(Distributed Training)

三、按任务特性分类

1. 在线学习(Online Learning)

2. 元学习(Meta-Learning)

3. 课程学习(Curriculum Learning)

四、典型应用场景

五、选择训练方法的关键因素


你的痛苦,我都心疼,想为你解决

                                                —— 25.2.15

一、按学习范式分类

1. 监督学习(Supervised Learning)

  • 核心思想:使用带有标签(已知输入-输出对)的数据训练模型。

  • 常见任务:分类(如垃圾邮件识别)、回归(如房价预测)。

  • 典型方法

    • 梯度下降法:通过反向传播调整模型参数,最小化损失函数。

    • 批量训练(Batch Training):每次迭代使用全部数据计算梯度。

    • 小批量梯度下降(Mini-batch Gradient Descent):每次使用一小部分数据(平衡速度和稳定性)。

    • 随机梯度下降(SGD):每次使用单个样本(收敛快但噪声大)。


2. 无监督学习(Unsupervised Learning)

  • 核心思想:从无标签数据中学习数据的内在结构。

  • 常见任务:聚类(如客户分群)、降维(如PCA)、生成(如GAN生成图像)。

  • 典型方法

    • K-Means聚类:通过迭代优化簇中心和样本分配。

    • 自编码器(Autoencoder):学习数据的低维表示。

    • 生成对抗网络(GAN):生成器和判别器对抗训练。


3. 半监督学习(Semi-supervised Learning)

  • 核心思想:结合少量标注数据和大量未标注数据训练。

  • 适用场景:标注成本高(如医学图像分析)。

  • 典型方法

    • 自训练(Self-training):用已训练模型预测未标注数据,扩展训练集。

    • 一致性正则化(Consistency Regularization):鼓励模型对扰动后的未标注数据预测一致(如FixMatch)。


4. 强化学习(Reinforcement Learning, RL)

  • 核心思想:通过试错与奖励机制训练智能体(Agent)。

  • 常见任务:游戏AI(如AlphaGo)、机器人控制。

  • 典型方法

    • Q-Learning:学习状态-动作价值函数。

    • 策略梯度(Policy Gradient):直接优化策略函数。

    • 深度确定性策略梯度(DDPG):结合深度学习和Actor-Critic框架。


5. 迁移学习(Transfer Learning)

  • 核心思想:将预训练模型的知识迁移到新任务。

  • 典型应用

    • 微调(Fine-tuning):在预训练模型(如BERT、ResNet)基础上调整参数。

    • 特征提取:冻结预训练层,仅训练新分类层。


6. 自监督学习(Self-supervised Learning)

  • 核心思想:通过设计辅助任务(Pretext Task)自动生成标签。

  • 典型方法

    • 对比学习(Contrastive Learning):如SimCLR,通过对比样本增强视图。

    • 掩码语言建模(Masked Language Modeling):如BERT预测被遮蔽的词语。


二、按训练技术分类

1. 数据增强(Data Augmentation)

  • 目的:增加数据多样性,防止过拟合。

  • 方法

    • 图像:旋转、裁剪、加噪声。

    • 文本:同义词替换、回译(Back Translation)。

    • 音频:变速、加背景噪声。


2. 正则化(Regularization)

  • 目的:限制模型复杂度,提高泛化能力。

  • 方法

    • L1/L2正则化:在损失函数中添加参数惩罚项。

    • Dropout:随机丢弃神经元(如全连接层设置0.5丢弃率)。

    • 早停法(Early Stopping):验证集性能不再提升时终止训练。


3. 优化算法(Optimization Algorithms)

  • 常用优化器

    • Adam:结合动量(Momentum)和自适应学习率(如NLP任务常用)。

    • RMSProp:自适应调整学习率(适合非平稳目标)。

    • AdaGrad:稀疏数据优化(如推荐系统)。


4. 模型集成(Ensemble Learning)

  • 目的:结合多个模型提升鲁棒性。

  • 方法

    • Bagging:并行训练多个模型并投票(如随机森林)。

    • Boosting:串行训练,纠正前序模型的错误(如XGBoost)。

    • Stacking:用元模型组合基模型的输出。


5. 分布式训练(Distributed Training)

  • 目的:加速大规模数据/模型的训练。

  • 方法

    • 数据并行:多GPU同步训练(如PyTorch的DataParallel)。

    • 模型并行:将模型拆分到不同设备(如大型Transformer)。


三、按任务特性分类

1. 在线学习(Online Learning)

  • 特点:模型逐步更新,适应数据流(如推荐系统实时反馈)。

2. 元学习(Meta-Learning)

  • 特点:学习“如何学习”,快速适应新任务(如小样本学习)。

3. 课程学习(Curriculum Learning)

  • 特点:从简单到复杂逐步训练(模仿人类学习过程)。


四、典型应用场景

方法适用场景
监督学习数据标注充足(如图像分类、文本情感分析)
半监督学习标注数据少,未标注数据多(如医学影像)
强化学习动态决策场景(如游戏、机器人控制)
迁移学习目标领域数据少,但有相关预训练模型(如NLP)
自监督学习无标注数据丰富(如预训练语言模型)

五、选择训练方法的关键因素

  1. 数据量级:数据少时优先迁移学习或半监督学习。

  2. 标注成本:标注困难时考虑自监督或弱监督学习。

  3. 任务类型:分类/回归用监督学习,生成任务用GAN或VAE。

  4. 实时性要求:在线学习适合需要快速更新的场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/19854.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV中的边缘检测

边缘检测是图像处理和计算机视觉中的关键技术之一,旨在识别图像中像素强度发生显著变化的区域,这些区域通常对应于物体的边界或轮廓。边缘检测在机器视觉中具有重要的需求背景,主要体现在以下几个方面: 图像分割:边缘…

vscode的一些实用操作

1. 焦点切换(比如主要用到使用快捷键在编辑区和终端区进行切换操作) 2. 跳转行号 使用ctrl g,然后输入指定的文件内容,即可跳转到相应位置。 使用ctrl p,然后输入指定的行号,回车即可跳转到相应行号位置。

Redis(高阶篇)02章——BigKey

一、面试题 阿里广告平台,海量数据里查询某一个固定前缀的key小红书,你如何生产上限制 keys* /flushdb/flushall等危险命令以防止阻塞或误删数据?美团,memory usage命令你用过吗?BigKey问题,多大算big&…

《Zookeeper 分布式过程协同技术详解》读书笔记-2

目录 zk的一些内部原理和应用请求,事务和标识读写操作事务标识(zxid) 群首选举Zab协议(ZooKeeper Atomic Broadcast protocol)文件系统和监听通知机制分布式配置中心, 简单Demojava code 集群管理code 分布式锁 zk的一…

53倍性能提升!TiDB 全局索引如何优化分区表查询?

作者: Defined2014 原文来源: https://tidb.net/blog/7077577f 什么是 TiDB 全局索引 在 TiDB 中,全局索引是一种定义在分区表上的索引类型,它允许索引分区与表分区之间建立一对多的映射关系,即一个索引分区可以对…

unity学习39:连续动作之间的切换,用按键控制角色的移动

目录 1 不同状态之间的切换模式 1.1 在1个连续状态和一个连续状态之间的transition,使用trigger 1.2 在2个连续状态之间的转换,使用bool值切换转换 2 至少现在有2种角色的移动控制方式 2.1 用CharacterController 控制角色的移动 2.2 用animator…

【Python 打造高效文件分类工具】

【Python】 打造高效文件分类工具 一、代码整体结构二、关键代码解析(一)初始化部分(二)界面创建部分(三)核心功能部分(四)其他辅助功能部分 三、运行与使用四、示图五、作者有话说 …

网络工程师 (43)IP数据报

前言 IP数据报是互联网传输控制协议(Internet Protocol,IP)的数据报格式,由首部和数据两部分组成。 一、首部 IP数据报的首部是控制部分,包含了数据报传输和处理所需的各种信息。首部可以分为固定部分和可变部分。 固定…

Leetcode 424-替换后的最长重复字符

给你一个字符串 s 和一个整数 k 。你可以选择字符串中的任一字符,并将其更改为任何其他大写英文字符。该操作最多可执行 k 次。 在执行上述操作后,返回 包含相同字母的最长子字符串的长度。 题解 可以先做LCR 167/Leetcode 03再做本题 滑动窗口&…

28 在可以控制 postgres 服务器, 不知道任何用户名的情况下怎 进入 postgres 服务器

前言 最近有这样的一个需求, 有一个 postgres 服务器 但是 不知道 他的任何的用户名密码, 但是我想要查询这台 postgres 服务器 然后 基于这个需求, 我们看一下 怎么来处理 pg_hba.conf 认证方式修改为 trust 首先将 postgres 服务器的认证方式修改为 trust 这时候 …

LM Studio笔记

一、什么是 LM Studio? LM Studio 是一款功能强大、易于使用的桌面应用程序,用于在本地机器上实验和评估大型语言模型(LLMs)。它允许用户轻松地比较不同的模型,并支持使用 NVIDIA/AMD GPU 加速计算。 功能集&#xff1…

内网下,Ubuntu (24.10) 离线安装docker最新版教程

一般在数据比较敏感的情况下,是无法使用网络的,而对于Ubuntu系统来说,怎么离线安装docker呢? 下面我给大家来讲一下: 采用二进制安装: 1.下载docker离线包 官网下载: Index of linux/static…

框架ThinkPHP(小迪网络安全笔记~

免责声明:本文章仅用于交流学习,因文章内容而产生的任何违法&未授权行为,与文章作者无关!!! 附:完整笔记目录~ ps:本人小白,笔记均在个人理解基础上整理,…

sql数据执行失败,三个命令依次执行

set global innodb_strict_mode off set global.sql_mode ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION; set sql_mode ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,ERROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION;

【网络安全】零基础入门网络安全劝退指北

作为从16年接触网络安全的小白,谈谈零基础如何入门网络安全,有不对的地方,请多多指教。 这些年最后悔的事情莫过于没有把自己学习的东西积累下来形成一个知识体系。 如何入门 简单了解网络安全 网络安全就是指的确保网络系统中的数据不被别…

【Linux】网络基础

目录 一、协议分层 (一)计算机网络 (二)协议分层 (三)OSI模型 (四)TCP/IP协议 二、网络传输过程 三、IP地址和MAC地址 (一)IP地址 (二&a…

ms-swift3 序列分类训练

目录 引言 一、数据集准备 二、训练/推理代码 2.1 训练 2.2 推理 三、性能验证 引言 swift 3.x支持了序列分类Command Line Parameters — swift 3.2.0.dev0 documentation 想尝试一下用多模态(图像)的序列分类与普通的图像分类任务有啥区别 一、…

STC 51单片机63——关于STC8H的ADC通道切换问题

使用STC8H时,发现在ADC中断中只能使用一个通道,即使切换了通道,那么数据要不为0,要不就是原先通道的电压。查阅手册,内容并不多,没有发现专门提到的问题。只能去试试,最后发现在ADC中断中&#…

大数据处理如何入门

大数据处理的入门可以从以下几个方面入手: 1. 基础知识学习 在深入大数据领域之前,建议先掌握一些基础知识,包括数据类型、存储与处理的基本概念,以及常用的数据处理工具。例如,Python或Java编程语言在大数据领域应用…

Logistic Regression 逻辑回归中的sigmoid函数是什么?

Sigmoid函数是一种在数学、计算机科学,尤其是在机器学习和深度学习领域广泛应用的函数,以下是关于它的详细介绍: 定义与公式 Sigmoid函数的数学表达式为: S ( x ) = 1 1 + e − x S(x)=\frac{1}{1 + e^{-x}} S(x)=1+e−x1​,其中 x x x 可以是一个实数、向量或矩阵。当 …