深度学习乳腺癌分类 计算机竞赛

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示


dataset train
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
// validation
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
//…

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

import json
import math
import os
import cv2
from PIL import Image
import numpy as np
from keras import layers
from keras.applications import DenseNet201
from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import cohen_kappa_score, accuracy_score
import scipy
from tqdm import tqdm
import tensorflow as tf
from keras import backend as K
import gc
from functools import partial
from sklearn import metrics
from collections import Counter
import json
import itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):IMG = []read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))for IMAGE_NAME in tqdm(os.listdir(DIR)):PATH = os.path.join(DIR,IMAGE_NAME)_, ftype = os.path.splitext(PATH)if ftype == ".png":img = read(PATH)img = cv2.resize(img, (RESIZE,RESIZE))IMG.append(np.array(img))return IMGbenign_train = np.array(Dataset_loader('data/train/benign',224))
malign_train = np.array(Dataset_loader('data/train/malignant',224))
benign_test = np.array(Dataset_loader('data/validation/benign',224))
malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))
malign_train_label = np.ones(len(malign_train))
benign_test_label = np.zeros(len(benign_test))
malign_test_label = np.ones(len(malign_test))X_train = np.concatenate((benign_train, malign_train), axis = 0)
Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)
X_test = np.concatenate((benign_test, malign_test), axis = 0)
Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)s = np.arange(X_train.shape[0])
np.random.shuffle(s)
X_train = X_train[s]
Y_train = Y_train[s]s = np.arange(X_test.shape[0])
np.random.shuffle(s)
X_test = X_test[s]
Y_test = Y_test[s]Y_train = to_categorical(Y_train, num_classes= 2)
Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train, test_size=0.2, random_state=11
)w=60
h=40
fig=plt.figure(figsize=(15, 15))
columns = 4
rows = 3for i in range(1, columns*rows +1):ax = fig.add_subplot(rows, columns, i)if np.argmax(Y_train[i]) == 0:ax.title.set_text('Benign')else:ax.title.set_text('Malignant')plt.imshow(x_train[i], interpolation='nearest')
plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16train_generator = ImageDataGenerator(zoom_range=2,  # 设置范围为随机缩放rotation_range = 90,horizontal_flip=True,  # 随机翻转图片vertical_flip=True,  # 随机翻转图片)

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):model = Sequential()model.add(backbone)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dropout(0.5))model.add(layers.BatchNormalization())model.add(layers.Dense(2, activation='softmax'))model.compile(loss='binary_crossentropy',optimizer=Adam(lr=lr),metrics=['accuracy'])return modelresnet = DenseNet201(weights='imagenet',include_top=False,input_shape=(224,224,3)
    )model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,verbose=1,factor=0.2, min_lr=1e-7)filepath="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')history = model.fit_generator(train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),steps_per_epoch=x_train.shape[0] / BATCH_SIZE,epochs=20,validation_data=(x_val, y_val),callbacks=[learn_control, checkpoint]
)

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)
history_df[['loss', 'val_loss']].plot()history_df = pd.DataFrame(history.history)
history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_report
classification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))from sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):if normalize:cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]print("Normalized confusion matrix")else:print('Confusion matrix, without normalization')print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.title(title)plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes, rotation=55)plt.yticks(tick_marks, classes)fmt = '.2f' if normalize else 'd'thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")plt.ylabel('True label')plt.xlabel('Predicted label')plt.tight_layout()cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))cm_plot_label =['benign', 'malignant']
plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/199208.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[算法学习笔记](超全)概率与期望

引子 先来讲个故事 话说在神奇的OI大陆上,有一只paper mouse 有一天,它去商场购物,正好是11.11,商店有活动 它很荣幸被选上给1832抽奖 在抽奖箱里,有3个篮蓝球,12个红球 paper mouse能抽3次 蒟蒻的p…

Java —— 抽象类和接口

目录 1. 抽象类 1.1 抽象类概念 1.2 抽象类语法与特性 1.3 抽象类的作用 2. 接口 2.1 接口的概念 2.2 接口的语法规则与特性 2.3 实现多个接口(解决多继承的问题) 2.4 接口间的继承 2.5 抽象类和接口的区别 2.6 接口的使用实例 2.7 Clonable 接口和深拷贝 2.7.1 Cloneable接口 …

手把手从零开始训练YOLOv8改进项目(官方ultralytics版本)教程

手把手从零开始训练 YOLOv8 改进项目 (Ultralytics版本) 教程,改进 YOLOv8 算法 本文以Windows服务器为例:从零开始使用Windows训练 YOLOv8 算法项目 《芒果 YOLOv8 目标检测算法 改进》 适用于芒果专栏改进 YOLOv8 算法 文章目录 官方 YOLOv8 算法介绍改进网络代码汇总第…

Apache阿帕奇安装配置

目录 一、下载程序 1. 点击Download 2. 点击Files for Microsoft Windows 3. 点击Apache Lounge 4. 点击httpd-2.4.54-win64-VSI6.zip ​5. 下载压缩包 6.解压到文件夹里 二、配置环境变量 1. 右键我的电脑 - 属性 2. 高级系统设置 3. 点击环境变量 4. 点击系统变…

IDEA调用接口超时,但Postman可成功调用接口

📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢交流讨论:欢迎加入我们一起学习!📢资源分享:耗时200小时精选的「软件测试」资…

运行软件报错mfc140.dll丢失?分享mfc140.dll丢失的解决方法

小伙伴们,你是否也有过这样的经历:每当碰到诸如" mfc140.dll 丢失 "之类的烦人错误时,你是不是会一头雾水,完全不知道从何下手去解决?不要担心,接下来咱就给你提供这样一篇实用教程,教…

接口测试基础与接口测试用例设计思路详解

接口测试简介 1.什么是接口 接口就是内部模块对模块,外部系统对其他服务提供的一种可调用或者连接的能力的标准,就好比usb接口,他是系统向外接提供的一种用于物理数据传输的一个接口,当然仅仅是一个接口是不能进行传输的&#x…

程序员开发者神器:10个.Net开源项目

今天一起盘点下,8月份推荐的10个.Net开源项目(点击标题查看详情)。 1、基于C#开发的适合Windows开源文件管理器 该项目是一个基于C#开发、开源的文件管理器,适用于Windows,界面UI美观、方便轻松浏览文件。此外&#…

Unity 中 TextMesh Pro 认识学习

TextMesh Pro User Guide | TextMeshPro | 3.0.6官方文档 有两个 TextMesh Pro 组件可用。 第一个 TMP 文本组件的类型为 <TextMeshPro> 旨在与 MeshRenderer 配合使用。该组件是旧版 TextMesh 组件的理想替代品。 要添加新的 <TextMeshPro> 文本对象&#xff…

深度优化数据库性能:Linux 内核参数调整解析

点击上方蓝字关注我 数据库服务器性能的优化是每个IT团队关注的焦点之一。除了数据库引擎的优化之外&#xff0c;合理调整操作系统的内核参数也是提高数据库性能的关键。本文将解析一些常见的 Linux 内核参数&#xff0c;以及它们在数据库服务器优化中的作用和建议的值。 1. 参…

华夏ERP打包手册

Maven安装及环境配置 1.下载 浏览器搜索maven点击apache Maven 2.选择安装目录&#xff0c;注意不能有中文 3.环境变量配置 点击计算机右键属性>高级系统设置>环境变量 新建系统变量 MAVEN_HOME 变量值是安装目录 进入path点击新建点击编辑&#xff0c;写入% MAVEN_H…

使用键盘管理器更改键盘快捷键,让键盘真正迎合你的使用习惯

如果默认快捷键不适合你&#xff0c;你肯定会想知道如何在Windows 11中更改键盘快捷键。 也许你已经习惯了macOS键盘&#xff0c;或者像我一样在Windows和Mac之间切换工作/游戏——如果是这样的话&#xff0c;重新配置默认的Windows快捷方式&#xff0c;使其与Mac上的快捷方式…

基于SSM的高校毕业选题管理系统设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

如何在3DMax中使用超过16个材质ID通道?

3DMAX效果通道扩展插件EffectsChannelEx教程 3DMax的材质ID通道允许我们生成渲染元素&#xff0c;这些元素可用于在合成或其他软件中产生处理或特殊效果。如对渲染或动画进行颜色校正。你可以在Photoshop中为你的静态3D渲染图像做这件事。或者使用After Effects、Blackmagic Fu…

Labview中for循环“无法终止”问题?即使添加了条线接线端,达到终止条件后,仍在持续运行?

关键&#xff1a; 搞清楚“运行”和“连续运行”两种运行模式的区别。 出现题目中所述问题&#xff0c;大概率是因为代码运行在“连续运行“模式下。 可以通过添加 探针 的方式&#xff0c;加深理解&#xff01;

Linux文件目录以及文件类型

文章目录 Home根目录 //bin/sbin/etc/root/lib/dev/proc/sys/tmp/boot/mnt/media/usr 文件类型 Home 当尝试使用gedit等编辑器保存文件时&#xff0c;系统默认通常会先打开个人用户的“家”&#xff08;home&#xff09;目录&#xff0c; 建议在通常情况下个人相关的内容也是保…

【献给过去的自己】栈实现计算器(C语言)

背景 记得在刚学C语言时&#xff0c;写了一篇栈实现计算器-CSDN博客文章。偶然间看到了文章的阅读量以及评论&#xff0c;居然有1.7w的展现和多条博友的点评&#xff0c;反馈。 现在回过头来看&#xff0c;的确有许多不严谨的地方&#xff0c;毕竟当时分享文章时&#xff0c;还…

Nodejs--Express框架使用

目录 一.概念 二.项目目录结构 三.app.js 四.项目需要的中间件 五.Mysql连接 六.日志配置 七.实体模型配置 八.统一结果封装 九.app.js的详细配置 十.自定义登录拦截器 十一.route路由配置 十二.controller处理 十二&#xff1a;静态页面&#xff1a; 十三&#xff…

高防CDN为什么可以防DDOS攻击

CDN的全称是ContentDeliveryNetwork&#xff0c;即内容分发网络&#xff0c;顾名思义&#xff0c;它是一个分布式节点网络(也称为边缘服务器)&#xff0c;CDN节点具有缓存内容的功能&#xff0c;使用户可以在不获取源服务器数据的情况下就近获取所需内容&#xff0c;提高客户访…

SpringCloud微服务通信两种方式Feign和Dubbo:Feign基本使用、自定义配置、使用优化;Dubbo基本实现

RestTemplate存在的问题 代码可读性差&#xff0c;编程体验不统一参数复杂&#xff0c;URL难以维护 Feign远程调用 Feign简介 ​ Feign是SpringCloud提供的一个声明式的伪Http客户端&#xff0c;它使得调用远程服务就像调用本地服务一样简单&#xff0c;只需要创建一个接口…