【小呆的力学笔记】有限元专题之循环对称结构有限元原理

文章目录

      • 1. 循环对称问题的提出
      • 2. 循环对称条件
        • 2.1 节点位移的循环对称关系
        • 2.2 节点内力的循环对称关系
      • 3. 在平衡方程中引入循环对称条件

1. 循环对称问题的提出

许多工程结构都是其中某一扇面的n次周向重复,也就是是周期循环对称结构。如果弹性体的几何形状、约束情况以及所受的外部载荷都是对称于某一轴,则所有的应力、应变和位移也就对称于对称轴,那么这就是循环对称问题。典型的有发动机轮盘受离心力载荷下的应力分析,轮盘结构如下图1所示。观察轮盘结构,不难发现轮盘是扇形段重复多次的结构,那么离心力是周期循环对称的,并假设轮盘温度场是沿周向均布的,那么轮盘的应力应变应该也是周期循环对称的。

在这里插入图片描述

对于循环对称问题,事实上可以通过仅对某一扇面进行有限元模型就能获得正确的应力、应变和位移分析结果,当然需要在有限元算法中引入特殊的条件。

2. 循环对称条件

2.1 节点位移的循环对称关系

在循环对称问题中,需要引入柱坐标系,来给定循环对称条件。如下图,其中 x y z xyz xyz是笛卡尔坐标系, r θ z r\theta z rθz是柱坐标系,结构是典型轮盘的某一扇段。

在这里插入图片描述

在该循环对称问题中,扇面的面A的节点 i i i和面B的对应节点 j j j在柱坐标系 r θ z r\theta z rθz应该具有相同的坐标,同时应该也具备相同的位移变量。假设节点 i i i和节点 j j j分别属于面A和面B的一对对应节点,见下面示意图,那么其柱坐标下的位移变量应该满足下式关系:
u r i = u r j u θ i = u θ j u z i = u z j u_{ri}=u_{rj}\\u_{\theta i}=u_{\theta j}\\u_{zi}=u_{zj} uri=urjuθi=uθjuzi=uzj
在这里插入图片描述

节点 i i i在柱坐标系下的位移与在笛卡尔坐标系下的位移进行变换,具体的变换关系如下

− u r i sin ⁡ α − u θ i cos ⁡ α = u x i u r i cos ⁡ α − u θ i sin ⁡ α = u y i u z i = u z i -u_{ri}\sin\alpha-u_{\theta i}\cos\alpha=u_{xi}\\ u_{ri}\cos\alpha-u_{\theta i}\sin\alpha=u_{yi}\\u_{zi}=u_{zi} urisinαuθicosα=uxiuricosαuθisinα=uyiuzi=uzi
写成矩阵形式
[ u x i u y i u z i ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ u r i u θ i u z i ] \begin{bmatrix} u_{xi}\\u_{yi}\\u_{zi} \end{bmatrix}= \begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{ri}\\u_{\theta i}\\u_{zi} \end{bmatrix} uxiuyiuzi = sinαcosα0cosαsinα0001 uriuθiuzi
节点 j j j在柱坐标系下的位移与在笛卡尔坐标系下的位移进行变换,具体的变换关系如下
u r j sin ⁡ β − u θ j cos ⁡ β = u x j u r j cos ⁡ β + u θ j sin ⁡ β = u y j u z j = u z j u_{rj}\sin\beta-u_{\theta j}\cos\beta=u_{xj}\\ u_{rj}\cos\beta+u_{\theta j}\sin\beta=u_{yj}\\ u_{zj}=u_{zj} urjsinβuθjcosβ=uxjurjcosβ+uθjsinβ=uyjuzj=uzj
写成矩阵形式
[ u x j u y j u z j ] = [ sin ⁡ β − cos ⁡ β 0 cos ⁡ α sin ⁡ β 0 0 0 1 ] [ u r j u θ j u z j ] \begin{bmatrix}u_{xj}\\u_{yj}\\u_{zj}\end{bmatrix} =\begin{bmatrix} \sin\beta & -\cos\beta & 0\\ \cos\alpha &\sin\beta & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{rj}\\u_{\theta j}\\u_{zj} \end{bmatrix} uxjuyjuzj = sinβcosα0cosβsinβ0001 urjuθjuzj
那么
[ u r j u θ j u z j ] = [ sin ⁡ β cos ⁡ β 0 − cos ⁡ α sin ⁡ β 0 0 0 1 ] [ u x j u y j u z j ] \begin{bmatrix}u_{rj}\\u_{\theta j}\\u_{zj}\end{bmatrix} =\begin{bmatrix} \sin\beta & \cos\beta & 0\\ -\cos\alpha &\sin\beta & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix} urjuθjuzj = sinβcosα0cosβsinβ0001 uxjuyjuzj
由于
[ u r i u θ i u z i ] = [ u r j u θ j u z j ] \begin{bmatrix}u_{ri}\\u_{\theta i}\\u_{zi}\end{bmatrix} =\begin{bmatrix}u_{rj}\\u_{\theta j}\\u_{zj}\end{bmatrix} uriuθiuzi = urjuθjuzj
那么
[ u x i u y i u z i ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ u r i u θ i u z i ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ u r j u θ j u z j ] = [ − sin ⁡ α − cos ⁡ α 0 cos ⁡ α − sin ⁡ α 0 0 0 1 ] [ sin ⁡ β cos ⁡ β 0 − cos ⁡ α sin ⁡ β 0 0 0 1 ] [ u x j u y j u z j ] = [ − sin ⁡ α sin ⁡ β + cos ⁡ α cos ⁡ β − sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β 0 cos ⁡ α sin ⁡ β + sin ⁡ α cos ⁡ β cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β 0 0 0 1 ] [ u x j u y j u z j ] = [ cos ⁡ ( α + β ) − sin ⁡ ( α + β ) 0 sin ⁡ ( α + β ) cos ⁡ ( α + β ) 0 0 0 1 ] [ u x j u y j u z j ] = [ cos ⁡ ( θ ) − sin ⁡ ( θ ) 0 sin ⁡ ( θ ) cos ⁡ ( θ ) 0 0 0 1 ] [ u x j u y j u z j ] = [ θ 1 ] [ u x j u y j u z j ] \begin{bmatrix}u_{xi}\\u_{yi}\\u_{zi}\end{bmatrix} =\begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{ri}\\u_{\theta i}\\u_{zi} \end{bmatrix} =\begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{rj}\\u_{\theta j}\\u_{zj} \end{bmatrix}\\ =\begin{bmatrix} -\sin\alpha & -\cos\alpha & 0\\ \cos\alpha &-\sin\alpha & 0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} \sin\beta & \cos\beta & 0\\ -\cos\alpha &\sin\beta & 0\\ 0&0&1 \end{bmatrix} \begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix} \\ =\begin{bmatrix} -\sin\alpha\sin\beta+\cos\alpha\cos\beta & -\sin\alpha\cos\beta-\cos\alpha\sin\beta & 0\\ \cos\alpha\sin\beta+\sin\alpha\cos\beta & \cos\alpha\cos\beta-\sin\alpha\sin\beta &0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix}\\ =\begin{bmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) & 0\\ \sin(\alpha+\beta) & \cos(\alpha+\beta) &0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix}\\ =\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) &0\\ 0&0&1 \end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix}=\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix} u_{xj}\\u_{yj}\\u_{zj} \end{bmatrix} uxiuyiuzi = sinαcosα0cosαsinα0001 uriuθiuzi = sinαcosα0cosαsinα0001 urjuθjuzj = sinαcosα0cosαsinα0001 sinβcosα0cosβsinβ0001 uxjuyjuzj = sinαsinβ+cosαcosβcosαsinβ+sinαcosβ0sinαcosβcosαsinβcosαcosβsinαsinβ0001 uxjuyjuzj = cos(α+β)sin(α+β)0sin(α+β)cos(α+β)0001 uxjuyjuzj = cos(θ)sin(θ)0sin(θ)cos(θ)0001 uxjuyjuzj =[θ1] uxjuyjuzj

2.2 节点内力的循环对称关系

扇形段I除了节点位移存在循环对称关系,剩余扇形对扇形段I的节点力也存在循环对称关系。典型的扇形段相互作用关系见下图,其中扇形段I是分析对象,扇形段II和扇形段III对扇形段I有相互作用。

在这里插入图片描述
其中扇形段I、II、III是重复扇形段, i i i i ′ i^{'} i i ′ ′ i^{''} i′′是一组对应周期循环节点, j j j j ′ j^{'} j j ′ ′ j^{''} j′′是一组对应周期循环节点。
其中 j ′ j^{'} j i i i的作用力为 f r i f_{ri} fri f θ i f_{\theta i} fθi f z i f_{zi} fzi j j j i ′ ′ i^{''} i′′的作用力为 f r i ′ ′ f_{ri^{''}} fri′′ f θ i ′ ′ f_{\theta i^{''}} fθi′′ f z i ′ ′ f_{zi^{''}} fzi′′,从周期循环对称特征定义,可知
f r i = f r i ′ ′ f θ i = f θ i ′ ′ f z i = f z i ′ ′ f_{ri}=f_{ri^{''}}\\ f_{\theta i}=f_{\theta i^{''}}\\ f_{zi}=f_{zi^{''}} fri=fri′′fθi=fθi′′fzi=fzi′′
那么, i ′ ′ i^{''} i′′ j j j的作用力 f r j f_{rj} frj f θ j f_{\theta j} fθj f z j f_{zj} fzj,存在如下关系式
f r i = − f r j f θ i = − f θ j f z i = − f z j f_{ri}=-f_{rj}\\ f_{\theta i}=-f_{\theta j}\\ f_{zi}=-f_{zj} fri=frjfθi=fθjfzi=fzj
注:上述节点力均在柱坐标系下。
参照上节节点位移的转换关系推导过程,不难推得在上述节点力关系式在笛卡尔坐标系下的表达式
[ f x i f y i f z i ] = − [ θ 1 ] [ f x j f y j f z j ] \begin{bmatrix}f_{xi}\\f_{yi}\\f_{zi}\end{bmatrix}=-\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix} f_{xj}\\f_{yj}\\f_{zj} \end{bmatrix} fxifyifzi =[θ1] fxjfyjfzj

3. 在平衡方程中引入循环对称条件

若某循环结构包含一对循环对称节点 i i i j j j,不失一般性,平衡方程可以写成下式

[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ k i 1 k i 2 ⋯ k i i ⋯ k i j ⋯ k i n ⋮ ⋮ ⋮ ⋮ ⋮ k j 1 k j 2 ⋯ k j i ⋯ k j j ⋯ k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ F i + f i ⋮ F j + f j ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{i1}&k_{i2}&\cdots&k_{ii}&\cdots&k_{ij}&\cdots&k_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{j1}&k_{j2}&\cdots&k_{ji}&\cdots&k_{jj}&\cdots&k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}u_1\\u_2\\\vdots\\u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\F_i+f_i\\\vdots\\F_j+f_j\\\vdots\\F_n \end{bmatrix} k11k21ki1kj1kn1k12k22ki2kj2kn2k1ik2ikiikjiknik1jk2jkijkjjknjk1nk2nkinkjnknn u1u2uiujun = R1+F1F2Fi+fiFj+fjFn
式中 u 1 u_1 u1为模型的位移约束,有 u 1 = u ‾ 1 u_1=\overline u_1 u1=u1 R 1 R_1 R1为支反力; F i , i = 1 , ⋯ F_i,i=1,\cdots Fii=1,为节点外载荷, f i 、 f j f_i、f_j fifj为其他扇形段对扇形段I的作用力,这里引入循环对称条件,

[ f i ] = − [ θ 1 ] [ f j ] \begin{bmatrix}f_{i}\end{bmatrix}=-\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix} f_{j}\end{bmatrix} [fi]=[θ1][fj]
上面平衡方程变成如下形式
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ k i 1 k i 2 ⋯ k i i ⋯ k i j ⋯ k i n ⋮ ⋮ ⋮ ⋮ ⋮ k j 1 k j 2 ⋯ k j i ⋯ k j j ⋯ k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ F i − θ f j ⋮ F j + f j ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{i1}&k_{i2}&\cdots&k_{ii}&\cdots&k_{ij}&\cdots&k_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{j1}&k_{j2}&\cdots&k_{ji}&\cdots&k_{jj}&\cdots&k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\ u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\F_i-\theta f_j\\\vdots\\F_j+f_j\\\vdots\\F_n \end{bmatrix} k11k21ki1kj1kn1k12k22ki2kj2kn2k1ik2ikiikjiknik1jk2jkijkjjknjk1nk2nkinkjnknn u1u2uiujun = R1+F1F2FiθfjFj+fjFn
进一步,用 θ T \theta^T θT左乘第 i i i行,则
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ k j 1 k j 2 ⋯ k j i ⋯ k j j ⋯ k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + f j ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{j1}&k_{j2}&\cdots&k_{ji}&\cdots&k_{jj}&\cdots&k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\ u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+f_j\\\vdots\\F_n \end{bmatrix} k11k21θTki1kj1kn1k12k22θTki2kj2kn2k1ik2iθTkiikjiknik1jk2jθTkijkjjknjk1nk2nθTkinkjnknn u1u2uiujun = R1+F1F2θTFifjFj+fjFn
将第 i i i行加到第 j j j行,上式进一步变换为
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i + k j i ⋯ θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u i ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii}+k_{ji}&\cdots&\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_i\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1ik2iθTkiiθTkii+kjiknik1jk2jθTkijθTkij+kjjknjk1nk2nθTkinθTkin+kjnknn u1u2uiujun = R1+F1F2θTFifjFj+θTFiFn
将位移循环对称条件引入上式中
[ u i ] = [ θ 1 ] [ u j ] \begin{bmatrix}u_{i}\end{bmatrix}=\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix}u_{j}\end{bmatrix} [ui]=[θ1][uj]
那么平衡方程变换为
[ k 11 k 12 ⋯ k 1 i ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i + k j i ⋯ θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ θ u j ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii}+k_{ji}&\cdots&\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\\theta u_j\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1ik2iθTkiiθTkii+kjiknik1jk2jθTkijθTkij+kjjknjk1nk2nθTkinθTkin+kjnknn u1u2θujujun = R1+F1F2θTFifjFj+θTFiFn
θ \theta θ提出来,右乘到第 i i i列,那么上式变为
[ k 11 k 12 ⋯ k 1 i θ ⋯ k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i θ ⋯ k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i θ ⋯ θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i θ + k j i θ ⋯ θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i θ ⋯ k n j ⋯ k n n ] [ u ‾ 1 u 2 ⋮ u j ⋮ u j ⋮ u n ] = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i}\theta&\cdots&k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i}\theta&\cdots&k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii}\theta&\cdots&\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii}\theta+k_{ji}\theta&\cdots&\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni}\theta&\cdots&k_{nj}&\cdots&k_{nn}\\\end{bmatrix} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_j\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1iθk2iθθTkiiθθTkiiθ+kjiθkniθk1jk2jθTkijθTkij+kjjknjk1nk2nθTkinθTkin+kjnknn u1u2ujujun = R1+F1F2θTFifjFj+θTFiFn

在上式中用缩减节点的位移列阵替换全节点位移列阵,即用 [ u ‾ 1 , u 2 , ⋯ , u i − 1 , u i + 1 , ⋯ , u j , ⋯ , u n ] \begin{bmatrix}\overline u_1,u_2,\cdots,u_{i-1},u_{i+1},\cdots,u_j,\cdots,u_n \end{bmatrix} [u1,u2,,ui1,ui+1,,uj,,un]替换 [ u ‾ 1 , u 2 , ⋯ , u i − 1 , u j , u i + 1 , ⋯ , u j , ⋯ , u n ] \begin{bmatrix}\overline u_1,u_2,\cdots,u_{i-1},u_{j},u_{i+1},\cdots,u_j,\cdots,u_n \end{bmatrix} [u1,u2,,ui1,ujui+1,,uj,,un]
那么相应的要将位移列阵中第 i i i行归属 u j u_j uj合并到第 j j j列,那么平衡方程变换为

[ k 11 k 12 ⋯ k 1 i − 1 k 1 i + 1 ⋯ k 1 i θ + k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 i − 1 k 2 i + 1 ⋯ k 2 i θ + k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 θ T k i 2 ⋯ θ T k i i − 1 θ T k i i + 1 ⋯ θ T k i i θ + θ T k i j ⋯ θ T k i n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i i − 1 + k j i − 1 θ T k i i + 1 + k j i + 1 ⋯ θ T k i i θ + k j i θ + θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i − 1 k n i + 1 ⋯ k n i θ + k n j ⋯ k n n ] n × ( n − 1 ) [ u ‾ 1 u 2 ⋮ u i − 1 u i + 1 ⋮ u j ⋮ u n ] ( n − 1 ) × 1 = [ R 1 + F 1 F 2 ⋮ θ T F i − f j ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1i-1}&k_{1i+1}&\cdots&k_{1i}\theta +k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2i-1}&k_{2i+1}&\cdots&k_{2i}\theta+k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}&\theta^Tk_{i2}&\cdots&\theta^Tk_{ii-1}&\theta^Tk_{ii+1} &\cdots&\theta^Tk_{ii}\theta+\theta^Tk_{ij}&\cdots&\theta^Tk_{in}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{ii-1}+k_{ji-1}&\theta^Tk_{ii+1} +k_{ji+1}&\cdots&\theta^Tk_{ii}\theta+k_{ji}\theta+\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni-1}&k_{ni+1}&\cdots&k_{ni}\theta+k_{nj}&\cdots&k_{nn}\\\end{bmatrix}_{n\times (n-1)} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_{i-1}\\u_{i+1}\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}_{(n-1)\times 1}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\\theta^TF_i-f_j\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21θTki1θTki1+kj1kn1k12k22θTki2θTki2+kj2kn2k1i1k2i1θTkii1θTkii1+kji1kni1k1i+1k2i+1θTkii+1θTkii+1+kji+1kni+1k1iθ+k1jk2iθ+k2jθTkiiθ+θTkijθTkiiθ+kjiθ+θTkij+kjjkniθ+knjk1nk2nθTkinθTkin+kjnknn n×(n1) u1u2ui1ui+1ujun (n1)×1= R1+F1F2θTFifjFj+θTFiFn
事实上如果位移列阵自由度为 ( n − 1 ) (n-1) (n1),那么相应的方程也只需要 ( n − 1 ) (n-1) (n1)个,因此我们去掉第 i i i方程,那么平衡方程变成
[ k 11 k 12 ⋯ k 1 , i − 1 k 1 , i + 1 ⋯ k 1 i θ + k 1 j ⋯ k 1 n k 21 k 22 ⋯ k 2 , i − 1 k 2 , i + 1 ⋯ k 2 i θ + k 2 j ⋯ k 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ k i − 1 , 1 k i − 1 , 2 ⋯ k i − 1 , i − 1 k i − 1 , i + 1 ⋯ k i − 1 , i θ + k i − 1 , j ⋯ k i − 1 , n k i + 1 , 1 k i + 1 , 2 ⋯ k i + 1 , i − 1 k i + 1 , i + 1 ⋯ k i + 1 , i θ + k i + 1 , j ⋯ k i + 1 , n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ θ T k i 1 + k j 1 θ T k i 2 + k j 2 ⋯ θ T k i , i − 1 + k j , i − 1 θ T k i , i + 1 + k j , i + 1 ⋯ θ T k i i θ + k j i θ + θ T k i j + k j j ⋯ θ T k i n + k j n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ k n 1 k n 2 ⋯ k n i − 1 k n i + 1 ⋯ k n i θ + k n j ⋯ k n n ] ( n − 1 ) × ( n − 1 ) [ u ‾ 1 u 2 ⋮ u i − 1 u i + 1 ⋮ u j ⋮ u n ] ( n − 1 ) × 1 = [ R 1 + F 1 F 2 ⋮ F i − 1 F i + 1 ⋮ F j + θ T F i ⋮ F n ] \begin{bmatrix}k_{11}&k_{12}&\cdots&k_{1,i-1}&k_{1,i+1}&\cdots&k_{1i}\theta +k_{1j}&\cdots&k_{1n}\\ k_{21}&k_{22}&\cdots&k_{2,i-1}&k_{2,i+1}&\cdots&k_{2i}\theta+k_{2j}&\cdots&k_{2n}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ k_{i-1,1}&k_{i-1,2}&\cdots&k_{i-1,i-1}&k_{i-1,i+1} &\cdots &k_{i-1,i}\theta +k_{i-1,j}&\cdots&k_{i-1,n}\\ k_{i+1,1}&k_{i+1,2}&\cdots&k_{i+1,i-1}&k_{i+1,i+1} &\cdots &k_{i+1,i}\theta +k_{i+1,j}&\cdots&k_{i+1,n}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ \theta^Tk_{i1}+k_{j1}&\theta^Tk_{i2}+k_{j2}&\cdots&\theta^Tk_{i,i-1}+k_{j,i-1}&\theta^Tk_{i,i+1} +k_{j,i+1}&\cdots&\theta^Tk_{ii}\theta+k_{ji}\theta+\theta^Tk_{ij}+k_{jj}&\cdots&\theta^Tk_{in}+k_{jn}\\ \vdots&\vdots& &\vdots&\vdots& &\vdots& &\vdots\\ k_{n1}&k_{n2}&\cdots&k_{ni-1}&k_{ni+1}&\cdots&k_{ni}\theta+k_{nj}&\cdots&k_{nn}\\\end{bmatrix}_{(n-1)\times (n-1)} \begin{bmatrix}\overline u_1\\u_2\\\vdots\\u_{i-1}\\u_{i+1}\\\vdots\\u_j\\\vdots\\u_n \end{bmatrix}_{(n-1)\times 1}=\begin{bmatrix}R_1+F_1\\F_2\\\vdots\\F_{i-1}\\F_{i+1}\\\vdots\\F_j+\theta^TF_i\\\vdots\\F_n \end{bmatrix} k11k21ki1,1ki+1,1θTki1+kj1kn1k12k22ki1,2ki+1,2θTki2+kj2kn2k1,i1k2,i1ki1,i1ki+1,i1θTki,i1+kj,i1kni1k1,i+1k2,i+1ki1,i+1ki+1,i+1θTki,i+1+kj,i+1kni+1k1iθ+k1jk2iθ+k2jki1,iθ+ki1,jki+1,iθ+ki+1,jθTkiiθ+kjiθ+θTkij+kjjkniθ+knjk1nk2nki1,nki+1,nθTkin+kjnknn (n1)×(n1) u1u2ui1ui+1ujun (n1)×1= R1+F1F2Fi1Fi+1Fj+θTFiFn
将上式写成分块矩阵形式
[ k 11 K 12 K 21 K 22 ] [ u ‾ 1 U 2 ] = [ R 1 + F 1 F ^ ] \begin{bmatrix}k_{11}&K_{12}\\K_{21}&K_{22} \end{bmatrix}\begin{bmatrix}\overline u_{1}\\U_{2} \end{bmatrix}=\begin{bmatrix}R_{1}+F_{1}\\ \hat F \end{bmatrix} [k11K21K12K22][u1U2]=[R1+F1F^]
将其展开
k 11 u ‾ 1 + K 12 U 2 = R 1 + F 1 K 21 u ‾ 1 + K 22 U 2 = F ^ k_{11}\overline u_{1}+K_{12}U_{2} = R_{1}+F_{1}\\ K_{21}\overline u_{1}+K_{22}U_{2}=\hat F k11u1+K12U2=R1+F1K21u1+K22U2=F^
那么 U 2 U_{2} U2可以从下式求解
U 2 = K 22 − 1 ( F ^ − K 21 u ‾ 1 ) U_{2}=K_{22}^{-1}(\hat F - K_{21}\overline u_{1}) U2=K221(F^K21u1)
那么,有
R 1 = k 11 u ‾ 1 + K 12 U 2 − F 1 R_{1}=k_{11}\overline u_{1}+K_{12}U_{2}-F_{1} R1=k11u1+K12U2F1
同时,在确定 u j u_{j} uj后,将其回代入下式
[ u i ] = [ θ 1 ] [ u j ] \begin{bmatrix}u_{i}\end{bmatrix}=\begin{bmatrix}\theta_1\end{bmatrix}\begin{bmatrix}u_{j}\end{bmatrix} [ui]=[θ1][uj]
可以确定 u i u_{i} ui,那么就确定全部节点位移,带入平衡方程可以得到 f i 、 f j f_{i}、f_{j} fifj,解得所有未知量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/199301.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Azure Machine Learning - Azure AI 搜索中的矢量搜索

矢量搜索是一种信息检索方法,它使用内容的数字表示形式来执行搜索方案。 由于内容是数字而不是纯文本,因此搜索引擎会匹配与查询最相似的矢量,而不需要匹配确切的字词。本文简要介绍了 Azure AI 搜索中的矢量支持。 其中还解释了与其他 Azure…

【grafana | clickhouse】实现展示多折线图

说明: 采用的是 Visualizations 的 Time series,使用的 clickhouse 数据源 在工作中遇到了一个需求,写好了代码,需要在grafana上展示在一个项目中所有人的,随时间的代码提交量变化图 目前遇到的问题:展示…

MySQL 备份和恢复

目录 一.MySQL数据库的备份的分类 1.1.数据备份的重要性 1.2.数据库备份的分类和备份策略 1.3.常见的备份方法 二.MySQL完全备份 2.1.什么是完全备份 2.2.完全备份的优缺点 2.3.实现物理冷备份与恢复 1)实现流程 2)前置准备 3)实现…

go语言学习-go环境安装

1、安装Go 1.1 下载安装 go官网 找对应电脑的版本进行安装即可。 点击安装包,直接下一步下一步即可,安装目录可以自行设置一下。 1.2 验证 windows通过cmd验证。 linux或者mac可以通过自带终端执行测试。 2、配置环境变量 2.1 windows 找到系统…

vue3 setup展示数据

效果图 1.创建数据 content.js import { reactive } from vueconst data reactive({color:red,title: 二十四节气,subTitle: 节气,是干支历中表示自然节律变化以及确立“十二月建”(月令)的特定节令。,list: [{name: "立春",con…

用向量数据库Milvus Cloud搭建GPT大模型+私有知识库的定制AI助手——PPT大纲助手

随着人工智能技术的不断发展,AI助手在各行各业中扮演着越来越重要的角色。在商业领域,PPT演示是一种常见的沟通方式,而定制化的PPT大纲助手能够极大地提高PPT制作效率和质量。本文将介绍如何利用向量数据库Milvus Cloud搭建GPT大模型和私有知识库,构建一款高效的PPT大纲助手…

Thales安全解决方案:国家网络安全的关键

随着信息技术的飞速发展,网络安全问题日益凸显。在这个背景下,Thales安全解决方案正成为提高国家网络安全的关键。本文将探讨Thales安全解决方案如何为国家网络安全保驾护航。 一、Thales安全解决方案概述 Thales安全解决方案是一种全方位的网络安全防护…

简单回顾矩阵的相乘(点乘)230101

[[1 0 1][1 1 0]] [[3 0 0 3][2 2 1 3][1 3 1 1]] [[4. 3. 1. 4.][5. 2. 1. 6.]]乘以 c11 a11*b11 a12*b21 a13*b31 1*3 0*2 1*1 4 c12 a11*b12 a12*b22 a13*b32 1*0 0*2 1*3 3 c13a11*b13 a12*b23a13*b33 c14a11*b14 a12*b24a13*b34 c21a21*b11 a22*b21 a23*b…

键盘控制ROS车运动

键盘控制ROS车运动 上位机 使用pyseria库与stm32单片机进行通信控制 #!/usr/bin/env python # -*- coding: utf-8 -*import sys, select, termios, tty import serialmsg """ ---------------------------w a x ds w : x a : y s : -x …

如何快速将txt类型的日志文件转换为excel表格并进行数据分析报表统计图(如:饼图、折线图、柱状图)?

打开excel创建空白文档 选择一个txt文件 一动下面箭头↑竖线,可以拖拽左右调整要判断转换为一列的数据宽度 根据情况设置不同列的数据格式(每一列可以点击),设置好后点击【完成】 设置单元格数据格式 手动插入第一行为每列数据的…

如何使用贝锐花生壳内网穿透远程访问JupyterNotebook?

在数据科学领域,Jupyter Notebook 已成为处理数据的必备工具。 其用途包括数据清理和探索、可视化、机器学习和大数据分析。Jupyter Notebook的安装非常简单,如果你是小白,那么建议你通过安装Anaconda来解决Jupyter Notebook的安装问题&#…

俄罗斯方块游戏制作

创建包和文件夹 1.创建小方块类 package eluosifangkuai; import java.awt.image.BufferedImage; import java.util.Objects;/*** author xiaoZhao* date 2022/5/7* describe* 小方块类* 方法: 左移、右移、下落*/ public class Cell {// 行private int row;//…

Midjourney绘画提示词Prompt参考学习教程

一、工具 SparkAi: SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软…

AIGC ChatGPT4对Gbase数据库进行总结

ChatGPT4 用一个Prompt完成Gbase数据库的总结。 AIGC ChatGPT 职场案例 AI 绘画 与 短视频制作 PowerBI 商业智能 68集 数据库Mysql 8.0 54集 数据库Oracle 21C 142集 Office 2021实战应用 Python 数据分析实战, ETL Informatica 数据仓库案例实战 Excel 2021实操 …

硬件开发笔记(十二):RK3568底板电路电源模块和RTC模块原理图分析

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/134429973 红胖子网络科技博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬…

广州华锐互动VRAR | VR课件内容编辑器解决院校实践教学难题

VR课件内容编辑器由VR制作公司广州华锐互动开发,是一款专为虚拟现实教育领域设计的应用,它能够将传统的教学内容转化为沉浸式的三维体验。通过这款软件,教师可以轻松创建和编辑各种虚拟场景、模型和动画,以更生动、直观的方式展示…

ClickHouse的 MaterializeMySQL引擎

1 概述 MySQL 的用户群体很大,为了能够增强数据的实时性,很多解决方案会利用 binlog 将数据写入到 ClickHouse。为了能够监听 binlog 事件,我们需要用到类似 canal 这样的第三方中间件,这无疑增加了系统的复杂度。 ClickHouse 20.…

Unity——URP相机详解

2021版本URP项目下的相机,一般新建一个相机有如下组件 1:Render Type(渲染类型) 有Base和Overlay两种选项,默认是Base选项 Base:主相机使用该种渲染方式,负责渲染场景中的主要图形元素 Overlay(叠加):使用了Oveylay的…

多维时序 | MATLAB实现PSO-BiGRU-Attention粒子群优化双向门控循环单元融合注意力机制的多变量时间序列预测

多维时序 | MATLAB实现PSO-BiGRU-Attention粒子群优化双向门控循环单元融合注意力机制的多变量时间序列预测 目录 多维时序 | MATLAB实现PSO-BiGRU-Attention粒子群优化双向门控循环单元融合注意力机制的多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 …

Ajax基础(应用场景|jquery实现Ajax|注意事项)

文章目录 一、Ajax简介二、基于jquery实现Ajax三、使用Ajax注意的问题1.Ajax不要与form表单同时提交2.后端响应格式问题3、使用了Ajax作为请求后的注意事项 一、Ajax简介 AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Javascript和XML”。…