文心一言 VS 讯飞星火 VS chatgpt (140)-- 算法导论11.4 5题

五、用go语言,考虑一个装载因子为a的开放寻址散列表。找出一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的 2 倍。这两个探查期望数可以使用定理11.6 和定理 11.8 中给定的上界。

文心一言,代码正常运行:

在开放寻址法中,一次不成功的查找探查的期望次数可以由装载因子 a 计算。根据定理11.6,这是 1/(1-a)。对于一次成功的查找,其期望探查次数为 1。

我们需要找到一个 a 值,使得一次不成功查找的探查期望数是成功查找的探查期望数的两倍。因此,我们可以设置以下等式:

1/(1-a) = 2 * 1

解这个等式,我们可以得到 a 的值。

package main  import "fmt"  func main() {  // Solve for a in 1/(1-a) = 2 * 1  a := 1.0 / (2.0 - 1.0)  fmt.Printf("The value of a that satisfies the condition is: %.2f\n", a)  
``}

这段代码的输出应该是 a = 2,这就是我们需要的答案。

在这里插入图片描述

讯飞星火,代码正常运行:

首先,我们需要计算一次成功查找的探查期望数和一次不成功查找的探查期望数。根据定理11.6,我们可以得到以下公式:

一次成功查找的探查期望数 = 1 / (1 - a)

一次不成功查找的探查期望数 = 2 * 一次成功查找的探查期望数

接下来,我们需要找到一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。我们可以使用二分法来寻找这个a值。以下是Go语言代码实现:

package mainimport ("fmt""math"
)func successProbability(a float64) float64 {return 1 / (1 - a)
}func failureProbability(a float64) float64 {return 2 * successProbability(a)
}func findA() float64 {left := 0.0001right := 0.5for math.Abs(right-left) > 1e-6 {mid := (left + right) / 2if failureProbability(mid) < successProbability(mid) {left = mid} else {right = mid}}return (left + right) / 2
}func main() {a := findA()fmt.Printf("找到的a值为: %f
", a)
}

运行上述代码,我们可以找到满足条件的非零a值。

在这里插入图片描述

在这里插入图片描述

360智脑,代码不能运行:

要找到一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的 2 倍,可以使用以下代码:

package main
import ("fmt""math/rand"
)type OpenAddrHashTable struct {capacity intloadFactor float64table  int
}func (o *OpenAddrHashTable) Init(capacity int, loadFactor float64) {o.capacity = capacityo.loadFactor = loadFactoro.table = make(OpenAddrHashTableBuckets, capacity)for i := range o.table {o.table[i] = make([]OpenAddrHashTableBucket, 0)}
}func (o *OpenAddrHashTable) Put(key int) {index := o.hash(key)for _, k := range o.table[index] {if k == key {return}}o.table[index] = append(o.table[index], key)
}func (o *OpenAddrHashTable) Get(key int) (int, bool) {index := o.hash(key)for _, k := range o.table[index] {if k == key {return k, true}}return 0, false
}func (o *OpenAddrHashTable) hash(key int) int {hash := rand.Intn(o.capacity)return hash % o.capacity
}type OpenAddrHashTableBuckets []OpenAddrHashTableBucketfunc (o OpenAddrHashTableBuckets) Len() int {return len(o)
}func (o OpenAddrHashTableBuckets) Less(i, j int) bool {return o[i].Get(0)[0] < o[j].Get(0)[0]
}func (o OpenAddrHashTableBuckets) Swap(i, j int) {o[i], o[j] = o[j], o[i]
}func main() {o := OpenAddrHashTable{}o.Init(10, 0.75)// ...
}

在代码中,我们使用了定理11.6 和定理 11.8 中给定的上界。其中,OpenAddrHashTableBuckets 是开放寻址散列表的buckets数组,OpenAddrHashTableBucket 是bucket中的元素。我们在初始化散列表时,需要确保每个bucket中存储的元素数量不超过其容量的一半。

在Put函数中,如果当前bucket中已经存在与key相等的元素,则直接返回,否则向bucket中添加新元素。

在Get函数中,如果当前bucket中已经存在与key相等的元素,则直接返回该元素和true;否则返回0和false。注意这里使用了定理 11.6 中给出的上界,即期望访问元素的次数不超过buckets数组长度的一半,因此需要在比较元素大小时使用小于符号。

在主函数中,我们初始化了一个OpenAddrHashTable对象,并调用了Init函数来设置散列表的容量和负载因子。然后,我们可以根据需要添加put和get函数以及其他操作。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

智谱清言:

首先,我们需要知道开放寻址散列表的探查期望次数公式:
E(h) = 1/p + (1/p + 1/p^2 + 1/p^3 + …)^(-1)
其中,p是散列表的大小,h是散列表的哈希函数。
根据定理11.6,一次成功查找的探查期望数为1/p。
现在,我们假设a是装载因子,即表中元素数量与表大小的比值。由于开放寻址散列表的装载因子不能超过1,所以我们知道a<1。
我们可以将一次不成功查找的探查期望数表示为E(h)2,根据题意,E(h)2 = 2 * 1/p。
我们将E(h)^2的公式代入散列表的探查期望次数公式中,得到:
2/p = 1/p + (1/p + 1/p^2 + 1/p^3 + …)^(-1) + (1/p + 1/p^2 + 1/p^3 + …)^(-1)
化简后得到:
1/p = (1/p + 1/p^2 + 1/p^3 + …)^(-1) * 2
两边同时取倒数,得到:
p = 2 + 1/p^2 + 1/p^3 + …
这是一个关于p的方程,我们可以通过迭代求解得到p的值。但是,由于p必须是一个整数,所以我们需要找到一个整数p,使得p满足上述方程。
通过尝试,我们可以发现p=4是一个满足条件的整数,因为:
4 = 2 + 1/4^2 + 1/4^3 + …
因此,当装载因子a=1/4时,一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。此时,散列表的探查期望次数为:
E(h) = 1/4 + (1/4 + 1/4^2 + 1/4^3 + …)^(-1)
这将带来更高的查找效率,因为相比于一次成功查找,一次不成功查找的代价更大。

在这里插入图片描述

通义千问:

在开放寻址散列中,如果哈希函数是随机的,并且负载因子是a,那么平均搜索长度(即一次查找的探查期望数)可以通过以下公式计算:

ASL = (1/(1-a)) * ln(1/a)

其中ln是自然对数。

因此,如果我们想要一次不成功的查找的探查期望数是一次成功查找的探查期望数的两倍,我们有:

(1/(1-b)) * ln(1/b) = 2 * (1/(1-a)) * ln(1/a)

我们可以将这个方程改写成:

b = 1 - exp(-2 * ln(1/a))

然后我们可以解出a:

a = 1 / exp((1-b)/2)

我们需要找到一个非零的a值来满足这个等式。我们可以从一个较小的a值开始(例如0.1),并逐步增加它,直到找到一个满足等式的a值。

在这里插入图片描述

天工:

根据定理 11.6,对于一个装载因子为 a 的开放寻址散列表,一次成功的查找所需的探查次数的期望值为:

E = 1 + (1/a) + (1/a^2) + …

根据定理 11.8,一次不成功的查找所需的探查次数的期望值为:

E’ = (1 - 1/a) + (1 - 1/a^2) + …

我们需要找到一个非零的 a 值,使得 E’ = 2E。

将 E 和 E’ 的公式代入上式,得到:

(1 - 1/a) + (1 - 1/a^2) + … = 2 * (1 + (1/a) + (1/a^2) + …)

化简得:

1 - 1/a + 1/a^2 - 1/a^3 + … = 1

这是一个等比数列求和的问题,我们可以使用求和公式:

S = a / (1 - r)

其中,S 是等比数列的和,a 是首项,r 是公比。对于本题,首项 a = 1,公比 r = 1/a。代入公式得:

1 / (1 - 1/a) = a

化简得:

a^2 - a + 1 = 0

使用求根公式解得:

a = (1 + sqrt(5)) / 2

因为 a 是一个装载因子,所以它的值应该在 0 和 1 之间。因此,我们可以选择 a = 0.618033988749895 作为一个合适的非零值。

验证一下,当 a = 0.618033988749895 时,E’ = 2E,即一次不成功的查找的期望次数是一次成功查找的期望次数的 2 倍。

在这里插入图片描述

灵小智:

首先,需要理解寻址散列表的基本概念。在寻址散列表中,每个键值对由一个或多个索引和一个值组成。在开放寻址散列表中,我们使用哈希函数将键映射到索引,但如果有多个键映射到同一个索引,我们需要通过额外的探查来确定键的值。

考虑一个装载因子为a的开放寻址散列表,假设哈希函数h将所有键映射到范围[0, a*n]的索引,其中n是散列表的大小。为了实现非零的a值使得一次不成功查找的探查期望数是成功查找期望数的两倍,我们可以采用以下策略:

首先,假设在理想情况下,所有键都成功地被哈希到不同的索引,此时探查期望数应该是每个可能的索引出现一次的概率,也就是(1/a)的n次方。但是实际情况下,可能会有一些冲突发生,也就是一些键被哈希到相同的索引。这时就需要进行额外的探查。

当哈希冲突发生时,我们有两个选择:1) 使用链地址法处理冲突,2) 执行一次额外的探查(即开放寻址法)。由于探查是随机的,所以我们不能控制它发生的概率。因此,为了满足你的要求,我们需要选择一个装载因子a的值,使得探查期望数E(m)与链表长度L(m)之和至少是成功查找期望数E(hit)的两倍。

定理11.6和定理11.8给出了探查期望数和链表长度的上界。这些定理指出,当装载因子a足够大时(具体地说,大约等于(log(n)+1)/log(1/d)),E(m)和L(m)之和与E(hit)大致相等。这里d是一个参数,通常被定义为冲突发生时每个额外查找成功的概率。这个概率通常取决于哈希函数的设计和冲突解决策略的选择。

因此,为了满足你的要求,我们可以选择a=d/(log(n)+1)。在这种情况下,一次不成功查找的探查期望数将是成功查找期望数的两倍。

注意:以上推理基于一些假设和简化,实际实现中可能需要进行一些调整和优化以适应特定的应用场景。此外,对于具体的编程语言如Go,你需要根据其语法和库来实现上述算法。

在这里插入图片描述

chatgpt:

要找到一个满足条件的装载因子a,我们需要根据定理11.6和定理11.8中给出的上界进行计算。这两个定理分别给出了一次成功查找和一次不成功查找的探查期望数的上界。

首先,我们回顾一下定理11.6和定理11.8:

  • 定理11.6:在开放寻址散列表中,一次成功查找的探查期望数最多为 (1 / (1 - a)) * ln(1 / (1 - a))。
  • 定理11.8:在开放寻址散列表中,一次不成功查找的探查期望数最多为 1 / (1 - a)。

我们要找到一个非零的a值,使得一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。即:

(1 / (1 - a)) <= 2 * ((1 / (1 - a)) * ln(1 / (1 - a)))

为了简化计算,我们可以假设ln(1 / (1 - a)) ≈ 0.5。这样我们可以将上述不等式转化为以下形式:

(1 / (1 - a)) <= 2 * ((0.5) * (1 / (1 - a)))

接下来,我们可以通过求解这个方程来得到满足条件的装载因子a:

(1 / (1 - a)) = 2 * ((0.5) * (1 / (1 - a)))

将等式两边乘以(1 - a)得到:

1 = 2 * 0.5 * (1 - a)

化简得到:

1 = (1 - a)

解方程可得:

a = 0

所以,当装载因子为零时,一次不成功查找的探查期望数是一次成功查找的探查期望数的2倍。

请注意,这个结果是在做了近似计算的基础上得出的。在实际应用中,我们通常会选择一个适当的装载因子来平衡存储空间和性能。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/200893.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

铸就匠心,打造西部最具权威的行业商会组织

中国商报陕西报道&#xff08;记者 朱清平&#xff09;西安市五金机电商会(以下简称商会)第二届一次会员代表大会暨新任理事、监事就职典礼于11月17日在西安经开洲际酒店召开。 商会于2018年10月成立,在5年的发展中,依托“一带一路”发展的“快车道”,通过新丝路国际工业品数字…

分享给自媒体人:做自媒体最好的心态

做自媒体路上的两大修行&#xff1a; 一是状态不好的时候&#xff0c;明知道停更会掉流量&#xff0c;依然可以毫不焦虑地躺平; 二是发的东西没人看&#xff0c;坚持更新也没流量&#xff0c;却依然可以坚定地做自己。 做号这件事&#xff0c;就是一分耕耘一分收获的。 可能有人…

感恩节的习俗 Custom of Family Dinner

感恩节是美国最普遍庆祝的传统节日之一。在每年11月的第四个星期四&#xff0c;感恩节如期而至。Thanksgiving is one of the most universally celebrated traditional American holidays. Every year, Thanksgiving arrives on the fourth Thursday of November without fail…

如何写老客户开发信?维护客户邮件怎么写?

老客户开发信的写作技巧&#xff1f;针对老客户的营销邮件模板&#xff1f; 老客户开发信是维护和发展客户关系的关键工具之一。通过巧妙的信函&#xff0c;您可以巩固与老客户之间的联系&#xff0c;促使他们继续购买您的产品或服务。在本文中&#xff0c;蜂邮将分享一些建议…

汇编基础知识

1.1 机器语言 机器语言就是一些二进制代码&#xff0c;存放在内存中。它是机器指令的集合&#xff0c;所谓机器指令就是机器能够正确执行的命令 1.2 汇编语言的产生 1.汇编语言的主体是汇编指令 2.汇编指令实际上就是机器指令的助记符。它们的唯一区别在于书写方式上 寄存器…

VB.net读写S50/F08IC卡,修改卡片密码控制位源码

本示例使用设备&#xff1a;Android Linux RFID读写器NFC发卡器WEB可编程NDEF文本/智能海报/-淘宝网 (taobao.com) 函数声明 Module Module1读卡函数声明Public Declare Function piccreadex Lib "OUR_MIFARE.dll" (ByVal ctrlword As Byte, ByRef serial As Byte, …

翻译软件Mate Translate mac中文版介绍说明

Mate Translate mac可以帮你翻译超过100种语言的单词和短语&#xff0c;使用文本到语音转换&#xff0c;并浏览历史上已经完成的翻译。你还可以使用Control S在弹出窗口中快速交换语言。 Mate Translate Mac版软件介绍 Mate Translate 可以在你的所有设备之间轻松同步&#x…

处理无线debug问题

无限debug的产生 条件说明 开发者工具是打开状态 js代码中有debugger js有定时处理 setInterval(() > {(function (a) {return (function (a) {return (Function(Function(arguments[0]" a ")()))})(a)})(bugger)(de, 0, 0, (0, 0)); }, 1000); ​ #这里就…

关键性进展! 小米造车露真容 预计明年上市

大家好,我是极智视界,欢迎关注我的公众号,获取我的更多前沿科技分享 邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码和资源下载,链接:https://t.zsxq.com/0aiNxERDq 小米在各种不同的产品上都在不断打上自己的品牌,这绝对不止于智能手机,而是有智能…

el-form动态表单动态验证(先验证不为空,再验证长度在20以内,最后向后台发送请求验证账号是否重复)

data(){var checkSno (rule, value, callback) > {if (!value) {callback(new Error("请输入账号"));} else if (value.length > 20) {callback(new Error("长度为1-20"));} else {if (this.form.id) {// 修改时检查账号是否重复selectLoginId({ sn…

JSP EL表达式基本使用

今天我们来说EL表达式 这在整个jsp中都是非常重要的一章 因为 如果我们用 <%属性%> 属性为空时 直接就是个 null 这个肯定是不能让用户看到的东西 所以 我们就需要EL表达式 例如 我们jsp代码编写如下 <% page contentType"text/html; charsetUTF-8" page…

怎么批量提取文件名字到Excel中?

怎么批量提取文件名字到Excel中&#xff1f;Excel是由微软公司开发的一种电子表格软件&#xff0c;它是Microsoft Office办公套件的一部分。Excel提供了强大的数据处理和分析功能&#xff0c;用户可以使用Excel创建、编辑和管理电子表格&#xff0c;进行各种计算、数据分析、图…

【5k字长文 | Vue学习笔记】#1 认识Vue对象和基础语法

Vue是一个非常流行的渐进式JavaScript框架&#xff0c;渐进式指的是自底向上&#xff0c;从小组件逐渐向上构成整个项目&#xff0c;渐进式还可以理解为&#xff1a;用什么就拿什么&#xff0c;每个组件只做自己的事&#xff0c;尽可能解耦合。 本节我们将学习简单的Vue实例&a…

线性代数 - 几何原理

目录 序言向量的定义线性组合、张成空间与向量基线性变换和矩阵线性复合变换与矩阵乘法三维空间的线性变换行列式矩阵的秩和逆矩阵维度变换点乘叉乘基变换特征值和特征向量抽象向量空间 序言 欢迎阅读这篇关于线性代数的文章。在这里&#xff0c;我们将从一个全新的角度去探索线…

机器学习第10天:集成学习

文章目录 机器学习专栏 介绍 投票分类器 介绍 代码 核心代码 示例代码 软投票与硬投票 bagging与pasting 介绍 核心代码 随机森林 介绍 代码 结语 机器学习专栏 机器学习_Nowl的博客-CSDN博客 介绍 集成学习的思想是很直观的&#xff1a;多个人判断的结合往往比…

家政保洁预约小程序app开发特点有哪些?

家政预约服务小程序APP开发的特点介绍&#xff1b; 1. 低成本&#xff1a;用户通过手机APP下单&#xff0c;省去了中介费用&#xff0c;降低了雇主的雇佣成本。 2. 高收入&#xff1a;家政服务人员通过手机APP接单&#xff0c;省去了中介费用&#xff0c;从而提高了服务人员的…

QT专栏1 -Qt安装教程

#本文时间2023年11月18日&#xff0c;Qt 6.6# Qt 安装简要说明&#xff1a; Qt有两个版本一个是商业版本&#xff08;收费&#xff09;&#xff0c;另一个是开源版本&#xff08;免费&#xff09;&#xff1b; 打开安装程序时&#xff0c;通过判断账号是否有公司&#xff0c;安…

校园报修抢修小程序系统开发 物业小区报修预约上门维修工单系统

开发的功能模块有&#xff1a; 1.报修工单提交&#xff1a;学生、教职员工等可以使用小程序提交报修请求。这通常包括选择报修的问题类型&#xff08;如水漏、电器故障、照明问题等&#xff09;&#xff0c;地点&#xff0c;报修联系人&#xff0c;联系电话等&#xff0c;并提供…

API之 要求接口上传pdf 以 合同PDF的二进制数据,multpart方式上传

实现 //时间戳13位毫秒private function getMillisecond() {list($s1,$s2) explode( ,microtime());return (float)sprintf(%.0f,(floatval($s1) floatval($s2)) * 1000);}// 组装参数private function gysscPost1($url,$data){// $data[timestamp] 1694402111964;$data[tim…

一个测试驱动的Spring Boot应用程序开发

文章目录 系统任务用户故事搭建开发环境Web应用的框架Spring Boot 自动配置三层架构领域建模域定义与领域驱动设计领域类 业务逻辑功能随机的Challenge验证 表示层RESTSpring Boot和REST API设计API第一个控制器序列化的工作方式使用Spring Boot测试控制器 小结 这里采用面向需…