残差网络
参考:https://blog.csdn.net/2301_80750681/article/details/142882802
以下是使用PyTorch实现的三层残差网络示例,包含三个残差块和完整的网络结构:
import torch
import torch.nn as nnclass BasicBlock(nn.Module):expansion = 1def __init__(self, in_channels, out_channels, stride=1, downsample=None):super(BasicBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3,stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)self.downsample = downsampledef forward(self, x):identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample:identity = self.downsample(x)out += identityout = self.relu(out)return outclass ResNet3Layer(nn.Module):def __init__(self, num_classes=10):super(ResNet3Layer, self).__init__()self.in_channels = 64# 初始卷积层self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# 三个残差块self.layer1 = self._make_layer(BasicBlock, 64, 1, stride=1)self.layer2 = self._make_layer(BasicBlock, 128, 1, stride=2)self.layer3 = self._make_layer(BasicBlock, 256, 1, stride=2)# 分类层self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(256 * BasicBlock.expansion, num_classes)def _make_layer(self, block, out_channels, blocks, stride=1):downsample = Noneif stride != 1 or self.in_channels != out_channels * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.in_channels, out_channels * block.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels * block.expansion))layers = []layers.append(block(self.in_channels, out_channels, stride, downsample))self.in_channels = out_channels * block.expansionfor _ in range(1, blocks):layers.append(block(self.in_channels, out_channels))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.fc(x)return x# 示例用法
model = ResNet3Layer(num_classes=10)
print(model)
关键实现细节说明:
- 残差块设计:每个
BasicBlock
包含两个3×3卷积层,通过downsample
参数处理维度匹配问题 - 网络结构:
- 初始卷积层(7×7卷积)用于提取基础特征
- 最大池化层进行初步下采样
- 三个残差块分别实现64→128→256通道的特征提取
- 全局平均池化替代全连接层减少参数量
- 维度匹配:通过1×1卷积调整shortcut连接的维度,保证残差相加的有效性
- 参数配置:
- 每个残差块的步长(stride)分别为1、2、2,实现特征图尺寸的逐步缩小
- 使用Batch Normalization加速训练收敛
该网络适用于CIFAR-10等小尺寸图像分类任务,可通过调整num_classes
参数适配不同数据集。实际训练时建议配合数据增强和正则化技术。
残差网络的数学推导核心在于其残差映射设计和梯度传播特性,主要包含以下关键点:
1. 残差前向传播公式
残差块的基本结构可表示为:
x l + 1 = x l + F ( x l , W l ) \mathbf{x}_{l+1} = \mathbf{x}_l + \mathcal{F}(\mathbf{x}_l, \mathbf{W}_l) xl+1=xl+F(xl,Wl)
其中:
- x l \mathbf{x}_l xl:第 l l l层的输入
- F \mathcal{F} F:残差函数(通常包含卷积、BN、激活等操作)
- W l \mathbf{W}_l Wl:可学习参数
对于 L L L层深度网络,累积表达式为:
x L = x 0 + ∑ i = 0 L − 1 F ( x i , W i ) \mathbf{x}_L = \mathbf{x}_0 + \sum_{i=0}^{L-1} \mathcal{F}(\mathbf{x}_i, \mathbf{W}_i) xL=x0+i=0∑L−1F(xi,Wi)
这表明深层特征可分解为浅层特征与残差之和
2. 反向传播梯度推导
通过链式法则计算梯度:
∂ L ∂ x l = ∂ L ∂ x L ⋅ ∏ i = l L − 1 ( 1 + ∂ F ( x i , W i ) ∂ x i ) \frac{\partial \mathcal{L}}{\partial \mathbf{x}_l} = \frac{\partial \mathcal{L}}{\partial \mathbf{x}_L} \cdot \prod_{i=l}^{L-1} \left( 1 + \frac{\partial \mathcal{F}(\mathbf{x}_i, \mathbf{W}_i)}{\partial \mathbf{x}_i} \right) ∂xl∂L=∂xL∂L⋅i=l∏L−1(1+∂xi∂F(xi,Wi))
其中:
- 常数项1保证梯度直接传递(恒等映射路径)
- 残差项 ∂ F ∂ x i \frac{\partial \mathcal{F}}{\partial \mathbf{x}_i} ∂xi∂F通过权重层传播
3. 解决梯度问题的数学机制
当残差项趋近于0时:
∂ L ∂ x l ≈ ∂ L ∂ x L ⋅ 1 \frac{\partial \mathcal{L}}{\partial \mathbf{x}_l} \approx \frac{\partial \mathcal{L}}{\partial \mathbf{x}_L} \cdot 1 ∂xl∂L≈∂xL∂L⋅1
即使深层梯度 ∂ L ∂ x L \frac{\partial \mathcal{L}}{\partial \mathbf{x}_L} ∂xL∂L较小,浅层仍能获得有效梯度更新,从根本上缓解梯度消失问题
4. 网络退化问题的解决
假设最优映射为 H ∗ ( x ) H^*(x) H∗(x),传统网络需直接拟合:
H ( x ) = H ∗ ( x ) H(x) = H^*(x) H(x)=H∗(x)
而残差网络改为拟合:
F ( x ) = H ∗ ( x ) − x \mathcal{F}(x) = H^*(x) - x F(x)=H∗(x)−x
这使得当 F ( x ) = 0 \mathcal{F}(x)=0 F(x)=0时,网络退化为恒等映射,保证性能不劣化
5. 维度匹配的数学处理
当输入输出维度不匹配时,引入1×1卷积:
y = F ( x , W i ) + W s x \mathbf{y} = \mathcal{F}(\mathbf{x}, \mathbf{W}_i) + \mathbf{W}_s\mathbf{x} y=F(x,Wi)+Wsx
其中 W s \mathbf{W}_s Ws为线性变换矩阵,保证残差相加的维度一致性
通过上述数学设计,残差网络实现了:
- 梯度稳定传播(反向过程)
- 深层特征的有效累积(前向过程)
- 网络退化现象的根本性解决
残差网络(ResNet)相比普通直接卷积网络的核心优势体现在以下方面:
1. 解决梯度消失与网络退化问题
通过跳跃连接(Shortcut Connection)的残差结构,反向传播时梯度可绕过非线性层直接传递。数学上,第 l l l层的梯度为:
∂ L ∂ x l = ∂ L ∂ x L ⋅ ∏ i = l L − 1 ( 1 + ∂ F ( x i , W i ) ∂ x i ) \frac{\partial \mathcal{L}}{\partial x_l} = \frac{\partial \mathcal{L}}{\partial x_L} \cdot \prod_{i=l}^{L-1} \left( 1 + \frac{\partial F(x_i, W_i)}{\partial x_i} \right) ∂xl∂L=∂xL∂L⋅i=l∏L−1(1+∂xi∂F(xi,Wi))
当残差项 ∂ F ∂ x i ≈ 0 \frac{\partial F}{\partial x_i} \approx 0 ∂xi∂F≈0时,梯度 ∂ L ∂ x l ≈ ∂ L ∂ x L \frac{\partial \mathcal{L}}{\partial x_l} \approx \frac{\partial \mathcal{L}}{\partial x_L} ∂xl∂L≈∂xL∂L,避免链式求导的指数衰减。
2. 优化目标简化
残差网络学习残差映射 F ( x ) = H ( x ) − x F(x) = H(x) - x F(x)=H(x)−x,而非直接学习目标函数 H ( x ) H(x) H(x)。当最优映射接近恒等变换时,残差 F ( x ) → 0 F(x) \to 0 F(x)→0比直接学习 H ( x ) → x H(x) \to x H(x)→x更容易收敛。
3. 支持极深网络结构
普通CNN在超过20层时会出现性能退化(训练/测试误差同时上升),而ResNet通过残差块堆叠可构建超过1000层的网络,且准确率随深度增加持续提升(如ResNet-152在ImageNet上Top-5错误率仅3.57%)。
4. 参数效率与计算优化
- 维度调整:使用1×1卷积调整通道数,参数量仅需 C i n × C o u t C_{in} \times C_{out} Cin×Cout,远少于3×3卷积的 9 C i n C o u t 9C_{in}C_{out} 9CinCout。
- 瓶颈结构:通过“1×1→3×3→1×1”的Bottleneck设计(如ResNet-50),在保持性能的同时减少计算量。
5. 实际性能优势
- 分类任务:ResNet-50在ImageNet上的Top-1准确率达76.5%,比VGG-16提升约8%。
- 训练效率:引入BN层后,ResNet训练速度比普通CNN快2-3倍,且收敛更稳定。
对比总结
特性 | 普通CNN | ResNet |
---|---|---|
最大有效深度 | ~20层 | >1000层 |
梯度传播稳定性 | 易消失/爆炸 | 通过跳跃连接稳定 |
训练误差随深度变化 | 先降后升(退化) | 持续下降 |
参数量(同精度) | 较高 | 更低(瓶颈结构) |
这些设计使得ResNet成为计算机视觉任务的基础架构,广泛应用于图像分类、目标检测等领域。
以下是使用PyTorch实现的残差网络(ResNet)在MNIST手写数字识别中的示例:
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoaderclass ResidualBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1):super().__init__()self.conv1 = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1),nn.BatchNorm2d(out_channels),nn.ReLU())self.conv2 = nn.Sequential(nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(out_channels))self.shortcut = nn.Sequential()if stride != 1 or in_channels != out_channels:self.shortcut = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride),nn.BatchNorm2d(out_channels))def forward(self, x):residual = self.shortcut(x)out = self.conv1(x)out = self.conv2(out)out += residualout = nn.ReLU()(out)return outclass ResNetMNIST(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(64),nn.ReLU())self.res_blocks = nn.Sequential(ResidualBlock(64, 64),ResidualBlock(64, 128, stride=2),ResidualBlock(128, 256, stride=2))self.fc = nn.Sequential(nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(),nn.Linear(256, 10))def forward(self, x):x = self.conv1(x)x = self.res_blocks(x)x = self.fc(x)return x# 数据预处理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))
])# 加载数据集
train_set = MNIST(root='./data', train=True, download=True, transform=transform)
test_set = MNIST(root='./data', train=False, download=True, transform=transform)# 创建数据加载器
train_loader = DataLoader(train_set, batch_size=128, shuffle=True)
test_loader = DataLoader(test_set, batch_size=128, shuffle=False)# 初始化模型和优化器
model = ResNetMNIST()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()# 训练循环
for epoch in range(10):model.train()for images, labels in train_loader:outputs = model(images)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()# 测试准确率model.eval()correct = 0with torch.no_grad():for images, labels in test_loader:outputs = model(images)_, predicted = torch.max(outputs.data, 1)correct += (predicted == labels).sum().item()acc = 100 * correct / len(test_set)print(f'Epoch {epoch+1}, Test Accuracy: {acc:.2f}%')
关键实现细节说明:
- 残差块设计:每个残差块包含两个3×3卷积层,通过
shortcut
连接处理维度变化 - 网络结构:
- 初始卷积层(3×3)提取基础特征
- 三个残差块实现64→128→256通道的特征提取
- 全局平均池化替代全连接层减少参数量
- 数据预处理:
- 标准化处理: μ = 0.1307 \mu=0.1307 μ=0.1307, σ = 0.3081 \sigma=0.3081 σ=0.3081
- 输入维度:1×28×28(通道×高×宽)
- 训练配置:
- Adam优化器(学习率0.001)
- 交叉熵损失函数
- 批量大小128,训练10个epoch
该模型在MNIST测试集上通常能达到**99%+**的准确率。实际训练时可添加数据增强(随机旋转、平移)提升泛化能力,或使用学习率调度器优化收敛过程。