【2021集创赛】基于ARM-M3的双目立体视觉避障系统 SOC设计

本作品参与极术社区组织的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~活动。

团队介绍

参赛单位:上海电力大学
队伍名称:骇行队
总决赛奖项:二等奖

1.摘要

    随着信息技术的发展,AGV(Automated Guided Vehicle,AGV)无人自动导航小车已被广泛应用于智能制造、智慧物流等场景。AGV搬运车的导航系统主要利用视觉、激光雷达等传感器,其主控系统大多使用多个芯片及其复杂嵌入式系统实现,成本高、功耗大、实时性差。为了解决这一问题,本设计在Xilinx FPGA平台上构建了ARM-M3软核,设计了加速双目视差图像计算的SOC及相关控制外设,验证了单个芯片引导AGV小车的基本功能。本设计主要工作体现在如下几个方面:
    1) 在Xilinx Artix XC7A200T平台上构建了ARM-M3微处理器及相关外设。通过OV5640双目相机进行图像采集,经协处理器加速,ARM-M3微处理器分析周围的环境进行路径规划最终产生PWM信号驱动小车进行运动。
    2)在硬件方面,本设计自制了OV5640双目相机及SiC780碳化硅电机驱动板。通过对双目视觉的原理进行分析,自制的双目相机选用了平行式双目立体视觉模式作为设计方案。得益于小车使用的麦克纳姆轮全向移动平台及自制的大电流碳化硅驱动板,小车可以自由灵活地进行各种运动。
    3)在算法方面,本设计对传统的立体匹配算法进行了并行优化,使得算法的运行速度得到了极大地提升,最终实现了资源消耗、功耗、运行速度三者较好的平衡。为了消除图像的径向畸变、倾斜畸变及切向畸变,本设计采用了张正友标定法对双目相机进行标定和校正。利用Matlab的自动标定工具Stereo Camera Calibrator App得到了相机的内外参数并代入校正算法最终实现了图像的校正。
    4)在测试方面,本文分析了传统立体匹配算法中存在的特征匹配耗时过长、匹配错误较多的问题,并在树莓派3B以及PC机进行了相关的对比实验。
    5)在应用场景方面,采集视频数据自行构建二维码数据集,使用TensorFlow训练定点卷积神经网络,利用HLS构建CNN IP核,使之具备二维码检测能力。

2.系统功能介绍

2.1 总体介绍

    本作品的目标是在ARM公司提供的ARM CortexM3 DesignStart RTL Eval处理器IP的基础上,设计AGV小车自主视觉避障专用SOC,开发出能够感知障碍物的双目深度视觉协处理器。
在这里插入图片描述

设计内容包括:

  • 开发了基于BM(Block Maching)算法的双目立体匹配智能协处理器;
  • 设计并制作了OV5640双目立体相机电路板 ,及双目相机视频采集Verilog驱动IP;
  • 设计了用于显示参数和图像的LCD 驱动;
  • 设计制作了运动控制模块驱动板,及相关PWM驱动;
  • 控制具备全位移动能力的麦克纳姆车进行避障演示。
  • 构建CNN IP核,使之具备二维码检测能力。

在这里插入图片描述

2.2 系统流程

本系统在Xilinx FPGA Artix XC7A200T上构建ARM Cortex-M3处理器,搭配自行设计的OV5640双目相机采集视频并利用VDMA存入DDR中。深度加速模块根据相机标定参数进行畸变矫正和立体匹配,并将所得的视差图进行缓存。M3软核从DDR中读取视差图,计算与前方障碍的相对距离并进行路径规划。最后读取帧率数据,将相机图像,视差结果,运动方向和图像帧率在LCD上显示,并根据规划结果控制小车。
在这里插入图片描述

3.系统架构

3.1 架构简介

系统主要由视频采集、图像处理、实时显示和运动控制四个模块组成。
在这里插入图片描述

  A、视频采集模块由相机采集、寄存器配置、视频流转换三个子模块构成,实现对自行设计的双目相机分辨率和成像参数配置,并将采集数据传输到图像处理模块。
  B、图像处理模块由配置为高性能模式的AXI连接器将VDMA、帧率计数器、深度加速核以及OSD结果呈现四个子模块互相连接,实现视差图计算和帧率计数功能,最后由结果呈现模块进行汇总传递给显示模块进行显示。
  C、显示模块由视频流转换、视频时序控制器、动态时钟、和VGA显示四个子模块构成。根据高性能视频系统参考设计搭建视频显示模块的结构和参数配置。视频时序控制器产生1080p对应的行场同步信号交由视频流转换子模块输出到VGA显示模块,动态时钟可由用户自行配置来驱动VGA显示模块以适配不同的屏幕分辨率。在上述几个模块的协作下实现分辨率为1080p刷新率为60Hz的图像和运行参数显示。
  D、运动控制模块主要由ARM-M3核、UART、GPIO、PWM子模块等模块构成。M3核读取DDR中深度加速模块的结果进行简单计算,实现对前方障碍物距离的估计,从而进行路径规划。最后读取视频采集模块和深度输出模块的帧率数据同小车运行方向一起输出到结果呈现模块和UART串口 ,实现实时运行参数的呈现。

3.2 软硬功能划分

    相较于传统单片机串行采集相机数据,传输单个像素进行显示,根据定时器中断产生PWM,以及在PC机上都难以实现的稳定视差图计算输出在本系统中都由硬件实现,极大减轻了CPU负担。
    软件部分主要在Keil中由C语言实现,主要用于初始化各个外设,配置相机寄存器。初始化完成后读取帧率计数模块数据和深度加速模块的结果,根据公式进行简单的四则运算完成对距离的估计。根据估计结果配置PWM模块和显示模块的寄存器实现运动控制和实时显示。

3.3 外设挂载

    本系统的中央处理单元是由ARM公司提供的ARM CortexM3 DesignStart RTL Eval,整个系统及外设部署在Xilinx xc7a200tfbg484 FPGA平台上。本系统的主要由Cortex-M3软核,OV5640双目摄像头模块,深度加速模块,DDR3内存控制器,VGA显示器,AHB总线矩阵、AXI总线及APB低速外设等相关模块组成,详细框图如下图所示。
在这里插入图片描述

4.模块及系统功能仿真与测试

4.1 相机测试仿真

    OV5640摄像头的寄存器配置由M3软核控制GPIO模拟SCCB实现,使用DSLogic逻辑分析仪捕获引脚电平,其配套软件DSView可以解析与SCCB兼容的IIC协议,显示不同电平组合对应的命令和数据。
在这里插入图片描述

4.2 加速模块仿真

在这里插入图片描述

4.3 CNN二维码检测

    二维码的图案相较于自然场景具有更简单的结构和纹理,本设计针对二维码图像的这一特点,构建了一个简单的CNN网络,该CNN网络包括三个卷积层、三个池化层和两个全连接层。
在这里插入图片描述

    输入的图像通过不同的卷积核产生不同的特征图像用于提取目标不同的特征值。经过卷积操作,可以完成对输入图像的降维和特征提取。为了进一步降低特征图的维度并减少FPGA资源消耗,每一个卷积层后还需要加上一个池化层来减少数据的空间大小并控制过拟合。
    全连接层是一个矩阵乘法,相当于一个特征空间变换,可以把有用的信息提取并整合。全连接的主要目标是维度变换,将高维的数据变成低维的数据。
    经过上述运算之后,可以得到输入图像中含有二维码的概率。

4.4 模块和系统的整体测试结果

    在室外放置两个纸箱作为路径障碍来进行系统的整体测试。下图节选自视频中小车对第二个障碍物进行避障操作参考图中两个障碍物的位置可知,在前进过程中前方物体距离太近时进行避障操作。当障碍物不再位于小车正前方时继续前进,达到避障的效果。
在这里插入图片描述

5.参赛体会

    通过本次比赛我们对基于ARM核的SOC设计有了一个初步的认识。通过ARM核+协处理器的方式使得整个系统在计算深度图像时的图像采集性能、功耗、成本优于常见的嵌入式系统及一般性能的PC机。相较于传统单片机串行采集相机数据,传输单个像素进行显示,根据定时器中断产生PWM,以及在PC机上都难以实现的稳定视差图计算输出在本系统中都由硬件实现,极大减轻了CPU负担。
    本设计使用的FPGA芯片是Xilinx FPGA Artix XC7A200T。在参赛的过程中我们发现,当LUT的消耗大于10W,用量大于70%时,布线所用时长将成倍的增加,时序也将很难收敛。

作品内容来源于骇行队,非开源,转载请标明出处。欢迎大家参加极术社区组织的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~活动,10月1日截止~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/202019.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Modbus转Profinet网关:PLC与天信流量计通讯的经典案例

无论您是PLC或工业设备的制造商,还是工业自动化系统的维护人员,可能会遇到需要将不同协议的设备连接组合并通讯的情况,Modbus和Profinet是现代工业自动化中常见的两种通信协议,在工业控制领域中被广泛应用。 在这种情况绝大多数会…

CentOS 7 使用cJSON 库

什么是JSON JSON是一种轻量级的数据交换格式,可读性强、编写简单。键值对组合编写规则,键名使用双引号包裹,冒号:分隔符后面紧跟着数值,有两种常用的数据类型是对象和数组。 对象:使用花括号{}包裹起来的…

DeepWalk: Online Learning of Social Representations(2014 ACM SIGKDD)

DeepWalk: Online Learning of Social Representations----《DeepWalk:用于图节点嵌入的在线机器学习算法》 DeepWalk 是将 word2vector 用到 GNN 上 DeepWalk: 将 Graph 的每个节点编码为一个 D 维向量(无监督学习),E…

加班做报表被嘲低效!快用大数据分析工具

做数据分析报表很耗时间,因为不仅要解决多业务系统数据质量标准不一问题,还需要进行大量的公式计算、报表设计与制作。但那是以前,在大数据分析工具强势崛起的当下,这些工作都能交给大数据分析工具来做了。以前是花90%的时间做报表…

哈希表-set、map

当需要判断一个元素是否在集合中时,就使用哈希法 散列表(Hash table,也叫哈希表),是根据键(Key)而直接访问在内存存储位置的数据结构。 哈希表中关键码就是数组的索引下标,然后通过…

【giszz笔记】产品设计标准流程【8】

(续上回) 真的没想到写了8个章节,想参考之前文章的,我把链接给到这里。 【giszz笔记】产品设计标准流程【7】-CSDN博客 【giszz笔记】产品设计标准流程【6】-CSDN博客 【giszz笔记】产品设计标准流程【5】-CSDN博客 【giszz笔…

苹果手机内存满了怎么清理?这里有你想要的答案!

手机内存不足是一个比较普遍的现象。由于现在手机应用程序的功能越来越强大,所以占用的内存也越来越大。同时用户会在手机中存储大量的数据,如照片、视频、文档等,这些都会占用大量的手机空间。那么,苹果手机内存满了怎么清理&…

Xilinx Zynq-7000系列FPGA任意尺寸图像缩放,提供两套工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐FPGA图像处理方案FPGA图像缩放方案 3、设计思路详解HLS 图像缩放介绍 4、工程代码1:图像缩放 HDMI 输出PL 端 FPGA 逻辑设计PS 端 SDK 软件设计 5、工程代码2:图像缩放 LCD 输出PL 端 FPGA 逻辑设计PS 端 SDK 软件设…

基于JAVA+SpringBoot+VUE+微信小程序的前后端分离咖啡小程序

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 随着社会的快速发展和…

分布式篇---第一篇

系列文章目录 文章目录 系列文章目录前言一、分布式幂等性如何设计?二、简单一次完整的 HTTP 请求所经历的步骤?三、说说你对分布式事务的了解前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,…

感恩节99句祝福语,感恩父母老师朋友亲人朋友们,永久快乐幸福

1、流星让夜空感动,生死让人生感动,爱情让生活感动,你让我感动,在感恩节真心祝福你比所有的人都开心快乐。 2、感恩节到了,想问候你一下,有太多的话语想要说,但是不知从何说起,还是用…

基于北方苍鹰算法优化概率神经网络PNN的分类预测 - 附代码

基于北方苍鹰算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于北方苍鹰算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于北方苍鹰优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

黑马点评笔记 redis缓存三大问题解决

文章目录 缓存问题缓存穿透问题的解决思路编码解决商品查询的缓存穿透问题 缓存雪崩问题及解决思路缓存击穿问题及解决思路问题分析使用锁来解决代码实现 逻辑过期方案代码实现 缓存问题 我们熟知的是用到缓存就会遇到缓存三大问题: 缓存穿透缓存击穿缓存雪崩 接…

科技赋能,创新发展!英码科技受邀参加2023中国创新创业成果交易会

11月17日至19日,2023中国创新创业成果交易会(简称:创交会)在广州市广交会展馆圆满举行。英码科技受邀参加本届创交会,并在会场展示了创新性的AIoT产品、深元AI引擎和行业热门解决方案。 据介绍,本届创交会由…

人工智能基础_机器学习047_用逻辑回归实现二分类以上的多分类_手写代码实现逻辑回归OVR概率计算---人工智能工作笔记0087

然后我们再来看一下如何我们自己使用代码实现逻辑回归的,对二分类以上,比如三分类的概率计算 我们还是使用莺尾花数据 首先我们把公式写出来 def sigmoid(z): 定义出来这个函数 可以看看到这需要我们理解OVR是如何进行多分类的,我们先来看这个 OVR分类器 思想 OVR(One-vs-…

越南服务器租用:企业在越南办工厂的趋势与当地(ERP/OA等)系统部署的重要性

近年来,越南逐渐成为全球企业布局的热门目的地之一。许多企业纷纷选择在越南设立工厂,以利用其低廉的劳动力成本和优越的地理位置。随着企业在越南的扩张,对于当地部署ERP系统或OA系统等的需求也日益增长。在这种情况下,租用越南服…

YOLOV5标注训练自己的数据全流程教程

概述 yolo在目标检测领域是非常有代表性的模型,它速度快识别效果也很精准,是实时检测模型中应用最广泛的。yolo的原理和代码是很容易获得的,且有各式各样的教程,但是模型怎么使用的教程相对比较少。本文讲解如何使用yolov5模型训…

快速上手Banana Pi BPI-M4 Zero 全志科技H618开源硬件开发开发板

Linux[编辑] 准备[编辑] 1. Linux镜像支持SD卡或EMMC启动,并且会优先从SD卡启动。 2. 建议使用A1级卡,至少8GB。 3. 如果您想从 SD 卡启动,请确保可启动 EMMC 已格式化。 4. 如果您想从 EMMC 启动并使用 Sdcard 作为存储,请确…

SQLite3

数据库简介 常用的数据库 大型数据库:Oracle 中型数据库:Server 是微软开发的数据库产品,主要支持 windows 平台。 小型数据库:mySQL 是一个小型关系型数据库管理系统,开放源码 。(嵌入式不需要存储太多数据。) SQL…

机器学习算法(1)——简单线性回归

一、说明 在在这篇文章中,我们将学习我们的第一个机器学习算法,称为简单线性回归。这是一个重要的算法,因为当您可能正在学习第一个神经网络(称为人工神经网络)时,在此算法中学习的技术也适用于深度学习。我…