机器学习第12天:聚类

文章目录

机器学习专栏

无监督学习介绍

聚类

K-Means

使用方法

实例演示

代码解析

绘制决策边界

本章总结


机器学习专栏

机器学习_Nowl的博客-CSDN博客

 

无监督学习介绍

某位著名计算机科学家有句话:“如果智能是蛋糕,无监督学习将是蛋糕本体,有监督学习是蛋糕上的糖霜,强化学习是蛋糕上的樱桃”

现在的人工智能大多数应用有监督学习,但无监督学习的世界也是广阔的,因为如今大部分的数据都是没有标签的

上一篇文章讲到的降维就是一种无监督学习技术,我们将在本章介绍聚类


聚类

聚类是指发现数据集中集群的共同点,在没有人为标注的情况下将数据集区分为指定数量的类别

K-Means

K-Means是一种简单的聚类算法。能快速,高效地对数据集进行聚类


使用方法

from sklearn.cluster import KMeansmodel = KMeans(n_clusters=3)
model.fit(data)

 这段代码导入了KMeans机器学习库,指定模型将数据划分为三类


实例演示

import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 生成一些随机数据作为示例
np.random.seed(42)
data = np.random.rand(100, 2)  # 100个数据点,每个点有两个特征# 指定要分成的簇数(可以根据实际情况调整)
num_clusters = 3# 使用KMeans算法进行聚类
kmeans = KMeans(n_clusters=num_clusters)
kmeans.fit(data)# 获取每个数据点的所属簇标签
labels = kmeans.labels_# 获取每个簇的中心点
centroids = kmeans.cluster_centers_print(centroids)
# # 可视化结果
for i in range(num_clusters):cluster_points = data[labels == i]plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label=f'Cluster {i + 1}')# 绘制簇中心点
plt.scatter(centroids[:, 0], centroids[:, 1], marker='X', s=200, color='red', label='Centroids')plt.scatter(centroids[0][0], centroids[0][1])plt.title('K-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend(loc='upper right')
plt.show()


代码解析

  1. 导入必要的库: 导入NumPy用于生成随机数据,导入KMeans类从scikit-learn中进行K-means聚类,导入matplotlib.pyplot用于可视化。

  2. 生成随机数据: 使用NumPy生成一个包含100个数据点的二维数组,每个数据点有两个特征。

  3. 指定簇的数量:num_clusters设置为希望的簇数,这里设置为3。

  4. 应用K-means算法: 创建KMeans对象,指定簇的数量,然后使用fit方法拟合数据。模型训练完成后,每个数据点将被分配到一个簇,并且簇中心点将被计算。

  5. 获取簇标签和中心点: 使用labels_属性获取每个数据点的簇标签,使用cluster_centers_属性获取每个簇的中心点。

  6. 可视化聚类结果: 使用循环遍历每个簇,绘制簇中的数据点。然后,使用scatter函数绘制簇中心点,并为图添加标题、轴标签和图例。

  7. 显示图形: 最后,使用show方法显示可视化结果


绘制决策边界

我们使用网格坐标和predict方法生成决策边界,然后使用contour函数在图上绘制边界。

主要代码

import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt# 生成一些随机数据作为示例
np.random.seed(42)
data = np.random.rand(100, 2)  # 100个数据点,每个点有两个特征# 指定要分成的簇数(可以根据实际情况调整)
num_clusters = 3# 使用KMeans算法进行聚类
kmeans = KMeans(n_clusters=num_clusters)
kmeans.fit(data)# 获取每个数据点的所属簇标签
labels = kmeans.labels_# 获取每个簇的中心点
centroids = kmeans.cluster_centers_# 可视化结果,包括决策边界
for i in range(num_clusters):cluster_points = data[labels == i]plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label=f'Cluster {i + 1}')# 绘制簇中心点
plt.scatter(centroids[:, 0], centroids[:, 1], marker='X', s=200, color='red', label='Centroids')# 绘制决策边界
h = 0.02  # 步长
x_min, x_max = data[:, 0].min() - 1, data[:, 0].max() + 1
y_min, y_max = data[:, 1].min() - 1, data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.contour(xx, yy, Z, colors='gray', linewidths=1, alpha=0.5)  # 绘制决策边界plt.title('K-means Clustering with Decision Boundaries')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.show()


本章总结

  • 无监督学习的意义
  • 聚类的定义
  • K-Means方法聚类
  • 绘制K-Means决策边界

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/202363.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3D人脸扫描设备助力企业家数字人复刻,打破商业边界

京都薇薇推出数字人VN,以京都薇薇董事长为原型制作,赋能品牌直播、短片宣传、线上面诊等活动,进一步增强消费者对品牌的交互体验,把元宇宙与品牌相融合,推动品牌线上服务与线下服务实现数字一体化,打造一个…

智能座舱架构与芯片- (13) 软件篇 下

四、面向服务的智能座舱软件架构 4.1 面向信号的软件架构 随着汽车电子电气架构向中央计算-域控制器的方向演进,甚至向车云一体化的方向迈进,适用于汽车的软件平台也需要进行相应的进化。 在传统的观念中,座舱域即娱乐域,座舱软…

地埋式积水监测仪厂家直销推荐,致力于积水监测

地埋式积水监测仪是一种高科技设备,能够实时监测地面积水深度,并及时发出预警信息,有效避免因积水而产生的安全隐患。这种智能监测仪可以安装在城市道路、立交桥、地下车库等易积水地势较低的地方,以确保及时监测特殊地段的积水&a…

Spring框架学习 -- 读取和存储Bean对象

目录 🚀🚀 回顾 getBean()方法的使用 根据name来获取对象 再谈getBean() (1) 配置扫描路径 (2) 添加注解 ① spring注解简介 ② 对类注解的使用 ③ 注解Bean对象的命名问题 ④ 方法加Bean注解 (3) Bean 注解的重命名 (4) 获取Bean对象 -- …

Linux本地MinIO存储服务远程调用上传文件

🔥博客主页: 小羊失眠啦. 🎥系列专栏:《C语言》 《数据结构》 《Linux》《Cpolar》 ❤️感谢大家点赞👍收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,…

如何通过类似于Android adb install apk 命令安装三方Harmony Hap包

安装命令 hdc install xxx.hapOpenHarmony设备安装Hap应用的五种方式 https://www.51cto.com/article/762223.htmlhttps://www.51cto.com/article/762223.html DevEco Studio 3.1为例新建个项目,点击File->Project Structure 进入签名页面然后点击Sign in登录华…

基于C#实现赫夫曼树

赫夫曼树又称最优二叉树,也就是带权路径最短的树,对于赫夫曼树,我想大家对它是非常的熟悉,也知道它的应用场景,但是有没有自己亲手写过,这个我就不清楚了,不管以前写没写,这一篇我们…

css animation 动画如何保留动画结束后的状态 animation-fill-mode: forwards

css animation 动画如何保留动画结束后的状态 animation-fill-mode: forwards 一、问题描述 在做一个弹窗动画提示的时候遇到了一个问题: 在动画结束的时候,移除元素时会有闪一下的问题,像这样,有残留的痕迹。 我的动画结尾是这…

Vue3 封装组件库并发布到npm仓库

一、创建 Vue3 TS Vite 项目 输入项目名称,并依次选择需要安装的依赖项 npm create vuelatest 项目目录结构截图如下: 二、编写组件代码、配置项和本地打包测试组件 在项目根目录新建 package 文件夹用于存放组件 (以customVideo为例&a…

LeSS敏捷框架高效生产力实践

每个团队可能都有一套适合自己的敏捷方法,本文介绍了ResponseTap工程团队通过采用LeSS框架、引入准备周,从而提升迭代冲刺研发效能的实践。原文: LeSS Agile, More Productive — Part 1: Pain[1], LeSS Agile, More Productive — Part 2: Promise, LeS…

2023亚太杯数学建模APMCM竞赛C题思路讲解:基于ARIMA与机理模型进行预测

本文针对6大问题,从多角度分析了我国新能源电动汽车发展形势与前景。文中针对不同问题,采用了层次分析法、时间序列模型、机理模型、回归模型等数学方法。并结合实例数据,对相关模型进行求解,以量化预测了新能源电动汽车在政策驱动、市场竞争、温室气体减排等多个方面的潜在贡献…

mongo DB -- aggregate分组查询后字段展示

一、分组查询 在mongoDB中可以使用aggregate中的$group操作对集合中的文档进行分组,但是查询后的数据不显示其他字段,只显示分组字段 aggregate进行分组示例 db.collection.aggregate([{$group: {_id: "$field"}},]) 查询后显示 展开只显示两个字段 二、显示所有字段…

找JPG格式图片的地址(持续更新中)

问题描述:找JPG格式图片的地址 解决办法: 第一个 谷歌的images 第二个,搜狗图片和百度图片 不过下载是WEBP格式,可以使用一个在线WEBP格式转JPG格式的在线网站即可。 转换的网址为: https://ezgif.com/webp-to-j…

linux通过串口传输文件

简介 在嵌入式调试过程中,我们经常会使用调试串口来查看Log或者执行指令,其实,调试串口还有另一种功能,就是传输文件,本文说明使用MobaXterm串口工具来传输文件。 环境要求 嵌入式系统需要安装lsz和lrz,…

【深度学习】卷积神经网络(CNN)

一、引子————边界检测 我们来看一个最简单的例子:“边界检测(edge detection)”,假设我们有这样的一张图片,大小88: 图片中的数字代表该位置的像素值,我们知道,像素值越大&#…

STM32-SPI协议详解及CubeMX+HAL函数配置分析

1 SPI协议 SPI(Serial Peripheral interface)串行外围设备接口是同步全双工的通信总线,在芯片的管脚上只占用四根线。 1.1 物理层 SS/NSS/CS:从设备选择信号线(片选信号线)。由主设备控制,选择指定的从设备。 当主机要选择从设备时,把该从设备的SS信号线设置为低电平…

软件测试岗位与职业发展

一、软件测试岗位有哪些? 在企业中,软件测试领域的几个典型的职位有:功能测试工程师(也叫手工测试)、自动化测试工程师、性能测试工程师、测试开发等。 1、功能测试(手工测试)工程师 主要工作内…

C++算法入门练习——相同的二叉查找树

将第一组n​个互不相同的正整数先后插入到一棵空的二叉查找树中,得到二叉查找树T1​;再将第二组n个互不相同的正整数先后插入到一棵空的二叉查找树中,得到二叉查找树T2​。判断T1​和T2​​是否是同一棵二叉查找树。 二叉查找(搜索)树定义&am…

2023.11.22 IDEA Spring Boot 项目热部署

目录 引言 操作步骤 1. 在 pom.xml 中添加热部署框架支持 2. Setting 开启项目自动编译 3. 以后创建的新项目进行同步配置 4. 重复 配置 步骤2 的内容 5. 开启运行中的热部署 引言 Spring Boot 的热部署是一种在项目正在运行的时候修改代码,却不需要重新启动…

算法复杂度分析

文章目录 有数据范围反推算法复杂度以及算法内容一般方法递归 有数据范围反推算法复杂度以及算法内容 c一秒可以算 1 0 7 10^7 107~ 1 0 8 10^8 108次 一般方法 看循环 有几层循环就可以初步分析O( n i n^i ni) 双指针算法除外O(n) 递归 公式法 根据公式的形式&#xff0…