竞赛选题 题目:垃圾邮件(短信)分类 算法实现 机器学习 深度学习 开题

文章目录

  • 1 前言
  • 2 垃圾短信/邮件 分类算法 原理
    • 2.1 常用的分类器 - 贝叶斯分类器
  • 3 数据集介绍
  • 4 数据预处理
  • 5 特征提取
  • 6 训练分类器
  • 7 综合测试结果
  • 8 其他模型方法
  • 9 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于机器学习的垃圾邮件分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 垃圾短信/邮件 分类算法 原理

垃圾邮件内容往往是广告或者虚假信息,甚至是电脑病毒、情色、反动等不良信息,大量垃圾邮件的存在不仅会给人们带来困扰,还会造成网络资源的浪费;

网络舆情是社会舆情的一种表现形式,网络舆情具有形成迅速、影响力大和组织发动优势强等特点,网络舆情的好坏极大地影响着社会的稳定,通过提高舆情分析能力有效获取发布舆论的性质,避免负面舆论的不良影响是互联网面临的严肃课题。

将邮件分为垃圾邮件(有害信息)和正常邮件,网络舆论分为负面舆论(有害信息)和正面舆论,那么,无论是垃圾邮件过滤还是网络舆情分析,都可看作是短文本的二分类问题。

在这里插入图片描述

2.1 常用的分类器 - 贝叶斯分类器

贝叶斯算法解决概率论中的一个典型问题:一号箱子放有红色球和白色球各 20 个,二号箱子放油白色球 10 个,红色球 30
个。现在随机挑选一个箱子,取出来一个球的颜色是红色的,请问这个球来自一号箱子的概率是多少?

利用贝叶斯算法识别垃圾邮件基于同样道理,根据已经分类的基本信息获得一组特征值的概率(如:“茶叶”这个词出现在垃圾邮件中的概率和非垃圾邮件中的概率),就得到分类模型,然后对待处理信息提取特征值,结合分类模型,判断其分类。

贝叶斯公式:

P(B|A)=P(A|B)*P(B)/P(A)

P(B|A)=当条件 A 发生时,B 的概率是多少。代入:当球是红色时,来自一号箱的概率是多少?

P(A|B)=当选择一号箱时,取出红色球的概率。

P(B)=一号箱的概率。

P(A)=取出红球的概率。

代入垃圾邮件识别:

P(B|A)=当包含"茶叶"这个单词时,是垃圾邮件的概率是多少?

P(A|B)=当邮件是垃圾邮件时,包含“茶叶”这个单词的概率是多少?

P(B)=垃圾邮件总概率。

P(A)=“茶叶”在所有特征值中出现的概率。

在这里插入图片描述

3 数据集介绍

使用中文邮件数据集:丹成学长自己采集,通过爬虫以及人工筛选。

数据集“data” 文件夹中,包含,“full” 文件夹和 “delay” 文件夹。

“data” 文件夹里面包含多个二级文件夹,二级文件夹里面才是垃圾邮件文本,一个文本代表一份邮件。“full” 文件夹里有一个 index
文件,该文件记录的是各邮件文本的标签。

在这里插入图片描述

数据集可视化:

在这里插入图片描述

4 数据预处理

这一步将分别提取邮件样本和样本标签到一个单独文件中,顺便去掉邮件的非中文字符,将邮件分好词。

邮件大致内容如下图:

在这里插入图片描述

每一个邮件样本,除了邮件文本外,还包含其他信息,如发件人邮箱、收件人邮箱等。因为我是想把垃圾邮件分类简单地作为一个文本分类任务来解决,所以这里就忽略了这些信息。
用递归的方法读取所有目录里的邮件样本,用 jieba 分好词后写入到一个文本中,一行文本代表一个邮件样本:

import re
import jieba
import codecs
import os 
# 去掉非中文字符
def clean_str(string):string = re.sub(r"[^\u4e00-\u9fff]", " ", string)string = re.sub(r"\s{2,}", " ", string)return string.strip()def get_data_in_a_file(original_path, save_path='all_email.txt'):files = os.listdir(original_path)for file in files:if os.path.isdir(original_path + '/' + file):get_data_in_a_file(original_path + '/' + file, save_path=save_path)else:email = ''# 注意要用 'ignore',不然会报错f = codecs.open(original_path + '/' + file, 'r', 'gbk', errors='ignore')# lines = f.readlines()for line in f:line = clean_str(line)email += linef.close()"""发现在递归过程中使用 'a' 模式一个个写入文件比 在递归完后一次性用 'w' 模式写入文件快很多"""f = open(save_path, 'a', encoding='utf8')email = [word for word in jieba.cut(email) if word.strip() != '']f.write(' '.join(email) + '\n')print('Storing emails in a file ...')
get_data_in_a_file('data', save_path='all_email.txt')
print('Store emails finished !')

然后将样本标签写入单独的文件中,0 代表垃圾邮件,1 代表非垃圾邮件。代码如下:

def get_label_in_a_file(original_path, save_path='all_email.txt'):f = open(original_path, 'r')label_list = []for line in f:# spamif line[0] == 's':label_list.append('0')# hamelif line[0] == 'h':label_list.append('1')f = open(save_path, 'w', encoding='utf8')f.write('\n'.join(label_list))f.close()print('Storing labels in a file ...')
get_label_in_a_file('index', save_path='label.txt')
print('Store labels finished !')

5 特征提取

将文本型数据转化为数值型数据,本文使用的是 TF-IDF 方法。

TF-IDF 是词频-逆向文档频率(Term-Frequency,Inverse Document Frequency)。公式如下:

在这里插入图片描述

在所有文档中,一个词的 IDF 是一样的,TF 是不一样的。在一个文档中,一个词的 TF 和 IDF
越高,说明该词在该文档中出现得多,在其他文档中出现得少。因此,该词对这个文档的重要性较高,可以用来区分这个文档。

在这里插入图片描述

import jieba
from sklearn.feature_extraction.text import TfidfVectorizerdef tokenizer_jieba(line):# 结巴分词return [li for li in jieba.cut(line) if li.strip() != '']def tokenizer_space(line):# 按空格分词return [li for li in line.split() if li.strip() != '']def get_data_tf_idf(email_file_name):# 邮件样本已经分好了词,词之间用空格隔开,所以 tokenizer=tokenizer_spacevectoring = TfidfVectorizer(input='content', tokenizer=tokenizer_space, analyzer='word')content = open(email_file_name, 'r', encoding='utf8').readlines()x = vectoring.fit_transform(content)return x, vectoring

6 训练分类器

这里学长简单的给一个逻辑回归分类器的例子

from sklearn.linear_model import LogisticRegression
from sklearn import svm, ensemble, naive_bayes
from sklearn.model_selection import train_test_split
from sklearn import metrics
import numpy as npif __name__ == "__main__":np.random.seed(1)email_file_name = 'all_email.txt'label_file_name = 'label.txt'x, vectoring = get_data_tf_idf(email_file_name)y = get_label_list(label_file_name)# print('x.shape : ', x.shape)# print('y.shape : ', y.shape)# 随机打乱所有样本index = np.arange(len(y))  np.random.shuffle(index)x = x[index]y = y[index]# 划分训练集和测试集x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)clf = svm.LinearSVC()# clf = LogisticRegression()# clf = ensemble.RandomForestClassifier()clf.fit(x_train, y_train)y_pred = clf.predict(x_test)print('classification_report\n', metrics.classification_report(y_test, y_pred, digits=4))print('Accuracy:', metrics.accuracy_score(y_test, y_pred))

7 综合测试结果

测试了2000条数据,使用如下方法:

  • 支持向量机 SVM

  • 随机数深林

  • 逻辑回归
    在这里插入图片描述

可以看到,2000条数据训练结果,200条测试结果,精度还算高,不过数据较少很难说明问题。

8 其他模型方法

还可以构建深度学习模型

在这里插入图片描述

网络架构第一层是预训练的嵌入层,它将每个单词映射到实数的N维向量(EMBEDDING_SIZE对应于该向量的大小,在这种情况下为100)。具有相似含义的两个单词往往具有非常接近的向量。

第二层是带有LSTM单元的递归神经网络。最后,输出层是2个神经元,每个神经元对应于具有softmax激活功能的“垃圾邮件”或“正常邮件”。

def get_embedding_vectors(tokenizer, dim=100):embedding_index = {}with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:for line in tqdm.tqdm(f, "Reading GloVe"):values = line.split()word = values[0]vectors = np.asarray(values[1:], dtype='float32')embedding_index[word] = vectorsword_index = tokenizer.word_indexembedding_matrix = np.zeros((len(word_index)+1, dim))for word, i in word_index.items():embedding_vector = embedding_index.get(word)if embedding_vector is not None:# words not found will be 0sembedding_matrix[i] = embedding_vectorreturn embedding_matrixdef get_model(tokenizer, lstm_units):"""Constructs the model,Embedding vectors => LSTM => 2 output Fully-Connected neurons with softmax activation"""# get the GloVe embedding vectorsembedding_matrix = get_embedding_vectors(tokenizer)model = Sequential()model.add(Embedding(len(tokenizer.word_index)+1,EMBEDDING_SIZE,weights=[embedding_matrix],trainable=False,input_length=SEQUENCE_LENGTH))model.add(LSTM(lstm_units, recurrent_dropout=0.2))model.add(Dropout(0.3))model.add(Dense(2, activation="softmax"))# compile as rmsprop optimizer# aswell as with recall metricmodel.compile(optimizer="rmsprop", loss="categorical_crossentropy",metrics=["accuracy", keras_metrics.precision(), keras_metrics.recall()])model.summary()return model

训练结果如下:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 100, 100) 901300
_________________________________________________________________
lstm_1 (LSTM) (None, 128) 117248
_________________________________________________________________
dropout_1 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 2) 258
=================================================================
Total params: 1,018,806
Trainable params: 117,506
Non-trainable params: 901,300
_________________________________________________________________
X_train.shape: (4180, 100)
X_test.shape: (1394, 100)
y_train.shape: (4180, 2)
y_test.shape: (1394, 2)
Train on 4180 samples, validate on 1394 samples
Epoch 1/20
4180/4180 [==============================] - 9s 2ms/step - loss: 0.1712 - acc: 0.9325 - precision: 0.9524 - recall: 0.9708 - val_loss: 0.1023 - val_acc: 0.9656 - val_precision: 0.9840 - val_recall: 0.9758Epoch 00001: val_loss improved from inf to 0.10233, saving model to results/spam_classifier_0.10
Epoch 2/20
4180/4180 [==============================] - 8s 2ms/step - loss: 0.0976 - acc: 0.9675 - precision: 0.9765 - recall: 0.9862 - val_loss: 0.0809 - val_acc: 0.9720 - val_precision: 0.9793 - val_recall: 0.9883

在这里插入图片描述

9 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/202382.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于C#实现树状数组

有一种数据结构是神奇的,神秘的,它展现了位运算与数组结合的神奇魅力,太牛逼的,它就是树状数组,这种数据结构不是神人是发现不了的。 一、概序 假如我现在有个需求,就是要频繁的求数组的前 n 项和&#x…

电动汽车充放电V2G模型MATLAB代码

微❤关注“电气仔推送”获得资料(专享优惠) 主要内容: 本程序主要建立电动汽车充放电V2G模型,采用粒子群算法,在保证电动汽车用户出行需求的前提下,为了使工作区域电动汽车尽可能多的消纳供给商场基础负荷…

投标文件的注意事项

一、检查标书 1.1有时候标书需要从别的地方复制黏贴文件,记住复制内容可以,但是不要复制“落款和时间”的格式,落款和时间的格式借鉴你的招标文件中给响应文件格式的落款和时间,切记! 1.2检查标书是否有空页&#xf…

红队攻防之Goby反杀

若结局非我所愿,那就在尘埃落定前奋力一搏。 本文首发于先知社区,原创作者即是本人 一、弹xss 为了方便,本次直接使用 PhpStudy 进行建站,开启的web服务要为MySQLNginx,这里的 PhpStudy 地址为 http://x.x.x.x&…

原始类型 vs. 对象(基本类型 vs. 引用类型)

原始类型 首先我们先看一段代码: let age 30; let oldAge age; age 31; console.log(age); console.log(oldAge);在 JavaScript 中,原始类型的赋值是通过值复制的方式进行的,而不会相互影响。只有对象类型的值才是通过引用复制的方式进行…

获取ip属地(ip2region本地离线包-超简单)

背景 最近有涉及要显示ip属地,但我想白嫖,结果就是白嫖的api接口太慢了,要延迟3到4秒左右,很影响体验,而且不一定稳定。 结果突然看到了这个【ip2region】开源项目,离线识别ip属地,精度自己测…

广播组播、本地套接字通信、wireshark、以太网帧格式、三次握手四次挥手

广播(使用 UDP 套接字) 广播地址:主机号最大的地址。 广播:给所在局域网的所有主机发送数据报。(之前的数据报发送方式是单播。) 以下情况中使用广播: 局域网 搜索协议。 比如家中的智能产品&a…

centos7安装MySQL—以MySQL5.7.30为例

centos7安装MySQL—以MySQL5.7.30为例 本文以MySQL5.7.30为例。 官网下载 进入MySQL官网:https://www.mysql.com/ 点击DOWNLOADS 点击链接; 点击如上链接: 选择对应版本: 点击下载。 安装 将下载后的安装包上传到/usr/local下…

Eclipse常用设置-乱码

在用Eclipse进行Java代码开发时,经常会遇到一些问题,记录下来,方便查看。 一、properties文件乱码 常用的配置文件properties里中文的乱码,不利于识别。 处理流程:Window -> Preferences -> General -> Ja…

万宾科技智能井盖传感器效果,特点有哪些?

现在城市发展越来越好,对基础设施的改造越来越多,比如修路搭桥、整改生态等都是为民服务的好工程。平时走在路上我们享受着平整的路面,井然有序的交通也为我们带来很大的方便。但是一个又一个的井盖看起来无关紧要,实际上如果路上…

Linux安装Mysql详细教程(两种安装方法)

Linux之Mysql安装配置 第一种:Linux离线安装Mysql(提前手动下载好tar.gz包)第二种:通过yum安装配置Mysql(服务器有网络) 第一种:tar.gz包安装 1、 查看是否已经安装 Mysql rpm -qa | grep m…

论文阅读:MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model

论文标题: MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model 翻译: MedSegDiff:基于扩散概率模型的医学图像分割 名词解释: 高频分量(高频信号)对应着图像变化剧烈的部分&…

SqlServer_idea连接问题

问题描述: sqlServer安装之后可以使用navicat进行连接idea使用账户密码进行登录连接失败 问题解决: 先使用sqlServer管理工具进行登录 使用window认证连接修改账户密码 启用该登录名 这时idea还是无法连接,还需要如下配置 打开sqlserve…

机器学习第12天:聚类

文章目录 机器学习专栏 无监督学习介绍 聚类 K-Means 使用方法 实例演示 代码解析 绘制决策边界 本章总结 机器学习专栏 机器学习_Nowl的博客-CSDN博客 无监督学习介绍 某位著名计算机科学家有句话:“如果智能是蛋糕,无监督学习将是蛋糕本体&a…

3D人脸扫描设备助力企业家数字人复刻,打破商业边界

京都薇薇推出数字人VN,以京都薇薇董事长为原型制作,赋能品牌直播、短片宣传、线上面诊等活动,进一步增强消费者对品牌的交互体验,把元宇宙与品牌相融合,推动品牌线上服务与线下服务实现数字一体化,打造一个…

智能座舱架构与芯片- (13) 软件篇 下

四、面向服务的智能座舱软件架构 4.1 面向信号的软件架构 随着汽车电子电气架构向中央计算-域控制器的方向演进,甚至向车云一体化的方向迈进,适用于汽车的软件平台也需要进行相应的进化。 在传统的观念中,座舱域即娱乐域,座舱软…

地埋式积水监测仪厂家直销推荐,致力于积水监测

地埋式积水监测仪是一种高科技设备,能够实时监测地面积水深度,并及时发出预警信息,有效避免因积水而产生的安全隐患。这种智能监测仪可以安装在城市道路、立交桥、地下车库等易积水地势较低的地方,以确保及时监测特殊地段的积水&a…

Spring框架学习 -- 读取和存储Bean对象

目录 🚀🚀 回顾 getBean()方法的使用 根据name来获取对象 再谈getBean() (1) 配置扫描路径 (2) 添加注解 ① spring注解简介 ② 对类注解的使用 ③ 注解Bean对象的命名问题 ④ 方法加Bean注解 (3) Bean 注解的重命名 (4) 获取Bean对象 -- …

Linux本地MinIO存储服务远程调用上传文件

🔥博客主页: 小羊失眠啦. 🎥系列专栏:《C语言》 《数据结构》 《Linux》《Cpolar》 ❤️感谢大家点赞👍收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,…

如何通过类似于Android adb install apk 命令安装三方Harmony Hap包

安装命令 hdc install xxx.hapOpenHarmony设备安装Hap应用的五种方式 https://www.51cto.com/article/762223.htmlhttps://www.51cto.com/article/762223.html DevEco Studio 3.1为例新建个项目,点击File->Project Structure 进入签名页面然后点击Sign in登录华…