二百零七、Flume——Flume实时采集5分钟频率的Kafka数据直接写入ODS层表的HDFS文件路径下

一、目的

在离线数仓中,需要用Flume去采集Kafka中的数据,然后写入HDFS中。

由于每种数据类型的频率、数据大小、数据规模不同,因此每种数据的采集需要不同的Flume配置文件。玩了几天Flume,感觉Flume的使用难点就是配置文件

二、使用场景

转向比数据是数据频率为5分钟的数据类型代表,数据量很小、频率不高,因此搞定了转向比数据的采集就搞定了这一类低频率数据的实时采集问题

1台设备每日的转向比数据规模是30KB,25台设备的数据规模则是750KB

三、转向比数据ODS层建表

create external table  if not exists  ods_turnratio(turnratio_json  string
)
comment '转向比数据外部表——静态分区'
partitioned by (day string)
row format delimited fields terminated by '\x001'
lines terminated by '\n'
stored as SequenceFile
tblproperties("skip.header.line.count"="1");

四、转向比数据的配置文件

## agent a1
a1.sources = s1
a1.channels = c1
a1.sinks = k1

## configure source s1
a1.sources.s1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.s1.kafka.bootstrap.servers = 192.168.0.27:9092
a1.sources.s1.kafka.topics = topic_b_turnratio
a1.sources.s1.kafka.consumer.group.id = turnratio_group
a1.sources.s1.kafka.consumer.auto.offset.reset = latest
a1.sources.s1.batchSize = 1000

## configure channel c1
## a1.channels.c1.type = memory
## a1.channels.c1.capacity = 10000
## a1.channels.c1.transactionCapacity = 1000
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /home/data/flumeData/checkpoint/turnratio
a1.channels.c1.dataDirs = /home/data/flumeData/flumedata/turnratio

## configure sink k1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hurys23:8020/user/hive/warehouse/hurys_dc_ods.db/ods_turnratio/day=%Y-%m-%d/
a1.sinks.k1.hdfs.filePrefix = turnratio
a1.sinks.k1.hdfs.fileSuffix = .log
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = second
a1.sinks.k1.hdfs.rollSize = 62500
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 600
a1.sinks.k1.hdfs.minBlockReplicas = 1

## Bind the source and sink to the channel
a1.sources.s1.channels = c1
a1.sinks.k1.channel = c1

注意:62500约为61KB

五、Flume写入HDFS结果

Flume根据时间戳按照ODS层表的分区,将数据写入对应HDFS文件

25台设备,50分钟1个文件,文件大小66.18 KB 

六、ODS表刷新分区后查验数据

(一)刷新表分区

MSCK REPAIR TABLE ods_turnratio;

(二)查看表数据

select * from ods_turnratio;

(三)验证数据完整性

--2023-11-19 数据基本完整  23时297条 标准300  少3条
--2023-11-20 数据基本完整  23时299条 标准300  少1条

数据基本完整,尤其是调度文件大小之后

19日a1.sinks.k1.hdfs.rollSize = 31250        数据基本完整 23时297条 标准300 少3条

20日a1.sinks.k1.hdfs.rollSize = 62500        数据基本完整 23时299条 标准300 少1条

七、注意点

(一)配置文件中的重点是红色标记的几点

a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = second
a1.sinks.k1.hdfs.rollSize = 62500
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 600
a1.sinks.k1.hdfs.minBlockReplicas = 1

(二)任务配置文件中rollSize参数设置可大不可小

rollSize参数小的话数据会丢失,大的话没问题

配置文件的参数还是不断调试中,争取调到最优的状态。能够及时、完整的消费Kafka数据,并且能够最大化的利用HDFS资源。

目前就先这样,如果有问题的话后面再更新!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/202497.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【电路笔记】-星三角变换(Star-Delta Transformation)

星三角变换(Star-Delta Transformation) 文章目录 星三角变换(Star-Delta Transformation)1、概述1.1 单相配置1.2 多相配置 2、三相连接2.1 Y配置2.2 Δ配置 3、Y-Δ 和 Δ-Y 变换3.1 Y-Δ变换3.2 Δ-Y变换3.3 应用 4、总结 本文…

2023年DevOps国际峰会暨BizDevOps企业峰会(DOIS北京站)-核心PPT资料下载

一、峰会简介 在数字化转型的大背景下,企业选择实践 DevOps 来提升 IT 效能成为常态,BizDevOps 作为企业自身数字化变革的重要主题之一,需要全行业共同努力促进繁荣和发展。从 DevOps 到 BizDevOps,业务与技术如何融合&#xff1…

大模型的交互能力

摘要: 基础大模型显示出明显的潜力,可以改变AI系统的开发人员和用户体验:基础模型降低了原型设计和构建AI应用程序的难度阈值,因为它们在适应方面的样本效率,并提高了新用户交互的上限,因为它们的多模式和生…

Flink 替换 Logstash 解决日志收集丢失问题

在某客户日志数据迁移到火山引擎使用 ELK 生态的案例中,由于客户反馈之前 Logstash 经常发生数据丢失和收集性能较差的使用痛点,我们尝试使用 Flink 替代了传统的 Logstash 来作为日志数据解析、转换以及写入 ElasticSearch 的组件,得到了该客…

为何越来越多的程序员纷纷转行网络安全?

目前,我国IT行业的人才结构不断升级,公司对程序员的要求越来越高,出现了大量的裁员现象,导致很多的程序员纷纷想转行的想法。 可能对于早期的程序员而言,学好编程语言就能找到比较好的工作。而现在伴随着互联网的不断发…

十一 动手学深度学习v2计算机视觉 ——微调

一、网络架构 一个神经网络一般可以分成两块 特征抽取,将原始像素变成容易线性分割的特征。线性分类器来做分类。 二、训练 是一个目标数据集上的正常训练任务, 但使用更强的正则化 使用更小的学习率使用更少的数据迭代 源数据集远远复杂于目标数据集…

如何用Python爬取全国高校数据?

前言 Python是一门强大的编程语言,它可以用于爬取互联网上的各种数据。在这篇文章中,我们将学习如何使用Python爬取全国高校数据,并使用代理IP进行爬取。 本文主要分为以下几个部分: 数据来源及需求安装依赖包及导入模块爬取全…

Python 提高篇学习笔记(一):深拷贝和浅拷贝

文章目录 一、什么是对象的引用二、深拷贝和浅拷贝2.1 浅拷贝(Shallow Copy)2.2 深拷贝(Deep Copy)2.3 copy.copy和copy.deepcopy的区别 一、什么是对象的引用 在 Python 中,对象的引用是指变量指向内存中某个对象的地址或标识符。当你创建一个新的对象(比如一个整…

k8s无法删除pv,pvc问题

问题: 在k8s里面创建了pv,pvc删除时报错:error: resource(s) were provided, but no name was specified 解决: 正确的删除顺序:1.先删除pod2.再删除pv 3.在删除pvc 删除pv,pvc命令: kubect…

“下一代云”白皮书发布:PaaS成为核心增长动力,腾讯云市场份额第二

“市场需求进一步向PaaS和SaaS层进发,使之成为公有云服务市场增长的主要动力。”11月22日,全球领先的IT研究和咨询公司国际数据公司(IDC)联合腾讯云发布“下一代云”白皮书——《聚焦平台能力,支撑智能化业务发展》指出…

电大搜题——让学习变得轻松高效

作为一名现代学者,您一定时刻关注着教育领域的进展和创新。今天,我将向大家介绍一个名为“电大搜题”的神奇工具,它将为您的学习之路带来一场完美的革命。 在快节奏的现代社会中,学习已经成为每个人追求成功的必经之路。然而&…

微服务实战系列之加密RSA

前言 在这个时代,我们选择的人生目标已丰富多彩,秉持的人生态度也千差万别: 除了吃喝玩乐,还有科技探索; 除了CityWalk,还有“BookWalk”; 除了走遍中国,还有走遍世界; …

leetCode 2925. 在树上执行操作以后得到的最大分数 + 正则难反 + 树形 DP

2925. 在树上执行操作以后得到的最大分数 - 力扣(LeetCode) 有一棵 n 个节点的无向树,节点编号为 0 到 n - 1 ,根节点编号为 0 。给你一个长度为 n - 1 的二维整数数组 edges 表示这棵树,其中 edges[i] [ai, bi] 表示…

浅谈能源智能管理系统在大学高校中的应用

安科瑞 华楠 摘要:结合深圳南方科技大学能效系统工程设计实例,针对校园中电耗、热量消耗、冷量消耗及水资源消耗数据的采集、传输、分析管理系统,分析了系统中的水、电、气在高校中的能耗分布,并阐述了节能应用方案,可…

「纯电」厮杀,广州车展的年末大戏

作者 |张祥威 编辑 |德新 年末的广州车展,揭开纯电动车激烈厮杀的一角。 1100多款车型亮相在这届车展,其中新能源车有460多辆,占接近一半比例。这其中,人们的焦点又放在十多款纯电车型上。 造车新势力中,理想的首款…

基于Python+TensorFlow+Django的交通标志识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 随着交通网络的不断扩展和智能交通系统的发展,交通标志的自动识别变得愈发重要。本项目旨在利用Python编…

micro_ros

原文链接Supported Hardware | micro-ROS Supported Hardware The main targets of micro-ROS are mid-range 32-bits microcontroller families. Usually, the minimum requirements for running micro-ROS in an embedded platform are memory constraints. Since memory u…

阿里云ECS服务器如何搭建并连接FTP,完整步骤

怎么用终端连接服务器就不多说了,直接开始搭建FTP。 我是用root账号执行的命令,如果不使用root账号,注意在命令前面加sudo。 一、安装FTP 我这里安装的是vsftpd。 1、检查是否已安装vsftpd: vsftpd -v如果出现了版本信息&…

Atlassian Confluence 路径遍历和命令执行漏洞 (CVE-2019-3396)

漏洞描述 Confluence 是由澳大利亚软件公司 Atlassian 开发的基于 Web 的企业 wiki。 Atlassian Confluence 6.14.2 版本之前存在一个未经授权的目录遍历漏洞,攻击者可以使用 Velocity 模板注入读取任意文件或执行任意命令。 漏洞环境及漏洞利用 启动docker环境…

【git】pip install git+https://github.com/xxx/xxx替换成本地下载编译安装解决网络超时问题

目录 🌑🌑 背景 🌒 🌒作用 🌔🌔 问题 🌔🌔解决方案 🌙方法一 🌙方法二 🌝🌝我的解决方案 整理不易,欢迎一键三连…