【腾讯云云上实验室-向量数据库】Tencent Cloud VectorDB在实战项目中替换Milvus测试

为什么尝试使用Tencent Cloud VectorDB替换Milvus向量库?

亮点:Tencent Cloud VectorDB支持Embedding,免去自己搭建模型的负担(搭建一个生产环境的模型实在耗费精力和体力)。

腾讯云向量数据库是什么?

腾讯云向量数据库是一款全托管的自研企业级分布式数据库服务,专用于存储、检索、分析多维向量数据。该数据库支持多种索引类型和相似度计算方法,单索引支持10亿级向量规模,可支持百万级 QPS 及毫秒级查询延迟。腾讯云向量数据库不仅能为大模型提供外部知识库,提高大模型回答的准确性,还可广泛应用于推荐系统、NLP 服务、计算机视觉、智能客服等 AI 领域。

Milvus是什么?

Milvus是在2019年创建的,其唯一目标是存储、索引和管理由深度神经网络和其他机器学习(ML)模型生成的大规模嵌入向量。作为一个专门设计用于处理输入向量查询的数据库,它能够处理万亿级别的向量索引。与现有的关系型数据库主要处理遵循预定义模式的结构化数据不同,Milvus从底层设计用于处理从非结构化数据转换而来的嵌入向量。

项目展示

游戏内提问
问答缓存库后台管理系统

项目介绍游戏内部接入ChatGPT的智能NPC,可以与她进行语音交流。可以回答与游戏相关的问题(这个专业问题是为了编写这个文章,专门添加到问答缓存库中的,游戏内会拒绝回答此类问题)。为了加快ChatGPT的回复速度和降低ChatGPT的费用,增加问答缓存机制。这里运用向量数据库的相似文本相似度高的特性,通过向量搜索,匹配相似度大于一定值,例如:0.95。搜索到相似问题,直接返回答案,不在进行ChatGPT访问。

其次,存在缓存,针对相似问题,还可以给予特定回复答案。例如上面示例,当提问“介绍一下腾讯向量数据库”,直接回复“腾讯云向量数据库是一款全托管的自研企业级分布式数据库服务,专用于存储、检索、分析多维向量数据。该数据库支持多种索引类型和相似度计算方法,单索引支持10亿级向量规模,可支持百万级 QPS 及毫秒级查询延迟。腾讯云向量数据库不仅能为大模型提供外部知识库,提高大模型回答的准确性,还可广泛应用于推荐系统、NLP 服务、计算机视觉、智能客服等 AI 领域。”

为什么使用向量数据库?

重点:速度
向量相似度匹配是很长的数组,例如:bge-large-zh模型文本转向量,生成的是768维的float数组。拿问题文本转换为的768维向量与缓存的所有问题的向量进行相似性计算,然后获取最相似的几条数据,这个运算量非常大,速度非常慢。
测试代码:
与300个768维向量进行相似比对,获取最相似的一条数据,耗时几秒钟。按照这个速度,如果与几千上万条数据进行这么计算,简直无法忍受。
这时就必须使用向量数据库了,向量数据库可以支持毫秒级检索上百万行数据。本人曾使用Milvus数据库,分别插入1000行数数据和插入10万行数据,然后进行搜索对比,都在几十毫秒返回结果,数据量的增多,对检索速度几乎没有任何影响。

本项目哪里需要使用向量数据库?

  • 玩家提问:玩家提问先通过embedding转换为向量,在向量库检索相似的问题,满足匹配条件,直接返回对应的答案。
  • 后台相似问题检索:后台通过向量检索相似问题,以便对特定问题进行增删改查。

使用腾讯云向量数库(Tencent Cloud VectorDB)的优点?

  1. 支持Embedding:腾讯云向量数据库(Tencent Cloud VectorDB)提供将非结构化数据转换为向量数据的能力,目前已支持文本 Embedding 模型,能够覆盖多种主流语言的向量转换,包括但不限于中文、英文。对于小型项目这是一个非常大的优势。可以降低自己搭建embedding模型或者使用第三方embedding模型的成本。
  2. FilterIndex的field_type支持数据类型简单:只有String和Uint64,使用起来非常省心。而Milvus数据支持10几种类型,对于初学者不友好,还要研究具体如何使用。

指定 Filter 字段的数据类型。取值如下:
String:字符型。若 name 为 id,则该参数固定为 FieldType.String。
Uint64:指无符号整数,该参数可设置为 FieldType.Uint64。

研究Tencent Cloud VectorDB,测试并封装代码库my_tc_vector_db.py

if __name__ == '__main__':# 初始化myTcVectorDB = MyTcVectorDB("http://****************.tencentclb.com:30000", "root","2epSOV3HK6tiyALo6UqE3mGV**************")# 删除数据库myTcVectorDB.drop_collection("db-qa", "question_768")myTcVectorDB.drop_database("db-qa")# 创建数据库myTcVectorDB.create_database("db-qa")# 创建索引和embedding,并创建集合index = Index(FilterIndex(name='id', field_type=FieldType.String, index_type=IndexType.PRIMARY_KEY),FilterIndex(name='question', field_type=FieldType.String, index_type=IndexType.FILTER),VectorIndex(name='vector', dimension=768, index_type=IndexType.HNSW,metric_type=MetricType.COSINE, params=HNSWParams(m=16, efconstruction=200)))embedding = Embedding(vector_field='vector', field='text', model=EmbeddingModel.BGE_BASE_ZH)collection = myTcVectorDB.create_collection("db-qa", "question_768", index, embedding)# 批量插入myTcVectorDB.upsert("db-qa", "question_768", [Document(id='0001', text='罗贯中', question='罗贯中'),Document(id='0002', text='吴承恩', question='吴承恩'),Document(id='0003', text='曹雪芹', question='曹雪芹'),Document(id='0004', text='郭富城', question='郭富城')])# 单条插入myTcVectorDB.upsert_one("db-qa", "question_768", id='0005', text='周杰伦', question='周杰伦')myTcVectorDB.upsert_one("db-qa", "question_768", id='0006', text='林俊杰', question='林俊杰')# 删除0003myTcVectorDB.delete_by_id("db-qa", "question_768", "0003")# 文本搜索(无需向量转换)text = myTcVectorDB.search_by_text("db-qa", "question_768", "郭富城")# 打印结果print_object(text)# 仅打印idif len(text[0]) > 0:for i in text[0]:print(i['id'])

解释代码功能:

  1. 初始化:传入tcVectorDB的url、username和key,创建myTcVectorDB.

  2. 删除数据库db-qa下的数据集question_768,然后删除数据库db-qa

  3. 重新创建数据库db-qa

  4. 指定索引和embedding,并创建集合question_768:这里指定id为主键、question为FilterIndex标量索引,vector为VectorIndex向量索引(注意官方文档说明:指定向量索引字段名,固定为 vector。)因为使用中文检索,Embedding使用BGE_BASE_ZH。官方文档的VectorIndex介绍

  5. 批量插入测试数据

  6. 单行插入测试数据

  7. 测试删除单行数据

  8. 测试文本搜索,并打印结果

MyTcVectorDB库代码

import jsonimport tcvectordb
from tcvectordb.model.collection import Embedding
from tcvectordb.model.document import Document, SearchParams
from tcvectordb.model.enum import ReadConsistency, MetricType, FieldType, IndexType, EmbeddingModel
from tcvectordb.model.index import Index, FilterIndex, VectorIndex, HNSWParamsclass MyTcVectorDB:def __init__(self, url: str, username: str, key: str, timeout: int = 30):self._client = tcvectordb.VectorDBClient(url=url, username=username, key=key,read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=timeout)def create_database(self, database_name: str):"""Create a database:param database_name: database name:return: database"""return self._client.create_database(database_name=database_name)def drop_database(self, database_name: str):"""Drop a database:param database_name: database name:return: result"""return self._client.drop_database(database_name=database_name)def create_collection(self, db_name: str, collection_name: str, index: Index, ebd: Embedding):db = self._client.database(db_name)# 第二步,创建 Collectioncoll = db.create_collection(name=collection_name,shard=1,replicas=0,description='this is a collection of question embedding',index=index,embedding=ebd)return colldef drop_collection(self, db_name: str, collection_name: str):"""Drop a collection:param db_name: db name:param collection_name: collection name:return: result"""db = self._client.database(db_name)return db.drop_collection(collection_name)def upsert_one(self, db_name: str, collection_name: str, **kwargs):"""Upsert one document to collection:param db_name : db name:param collection_name: collection name:param document: Document:return: result"""db = self._client.database(db_name)coll = db.collection(collection_name)res = coll.upsert(documents=[Document(**kwargs)])return resdef upsert(self, db_name: str, collection_name: str, documents):"""Upsert documents to collection:param db_name : db name:param collection_name: collection name:param documents: list of Document:return: result"""db = self._client.database(db_name)coll = db.collection(collection_name)res = coll.upsert(documents=documents)return resdef search_by_text(self, db_name: str, collection_name: str, text: str, limit: int = 10):"""Search documents by text:param db_name : db name:param collection_name: collection name:param text: text:return: result"""db = self._client.database(db_name)coll = db.collection(collection_name)# searchByText 返回类型为 Dict,接口查询过程中 embedding 可能会出现截断,如发生截断将会返回响应 warn 信息,如需确认是否截断可以# 使用 "warning" 作为 key 从 Dict 结果中获取警告信息,查询结果可以通过 "documents" 作为 key 从 Dict 结果中获取res = coll.searchByText(embeddingItems=[text],params=SearchParams(ef=200),limit=limit)return res.get('documents')def delete_by_id(self, db_name: str, collection_name: str, document_id):"""Delete document by id:param db_name : db name:param collection_name: collection name:param document_id: document id:return: result"""db = self._client.database(db_name)coll = db.collection(collection_name)res = coll.delete(document_ids=[document_id])return resdef print_object(obj):"""Print object"""for elem in obj:# ensure_ascii=False 保证中文不乱码if hasattr(elem, '__dict__'):print(json.dumps(vars(elem), indent=4, ensure_ascii=False))else:print(json.dumps(elem, indent=4, ensure_ascii=False))

开始动手使用Tencent Cloud VectorDB在项目中替换Milvus

1、创建问题库db-qa和集合question_768

与测试代码基本一致

    # 初始化myTcVectorDB = MyTcVectorDB("http://****tencentclb.com:30000", "root","2epSOV3HK6tiyALo6UqE3mGVMbpP*******")# 创建数据库myTcVectorDB.create_database("db-qa")# 创建索引和embedding,并创建集合index = Index(FilterIndex(name='id', field_type=FieldType.String, index_type=IndexType.PRIMARY_KEY),FilterIndex(name='question', field_type=FieldType.String, index_type=IndexType.FILTER),VectorIndex(name='vector', dimension=768, index_type=IndexType.HNSW,metric_type=MetricType.COSINE, params=HNSWParams(m=16, efconstruction=200)))embedding = Embedding(vector_field='vector', field='text', model=EmbeddingModel.BGE_BASE_ZH)collection = myTcVectorDB.create_collection("db-qa", "question_768", index, embedding)

2、游戏端和后台文本向量搜索,用MyTcVectorDB替换Milvus

两处代码基本一致。这里去掉文本转向量的步骤,因为TcVectorDB支持Embedding

    # 获取问题转换后的向量# success, vector = get_vector_from_text(question)# if not success:#     return {"code": -1, "id": 0, "answer": "向量计算失败"}# results = questionCollection.search(vector, limit)results = myVectorDB.search_by_text("db-qa", "question_768", question, limit)...

上面代码需要注意一点,腾讯向量数据的search结果与milvus的搜索结果是不一样的,需要做一下适配。

3、重建向量数据库

问答缓存的数据保存在mysql数据库,向量数据库主要作用是向量搜索。如果更换向量库,只需要重建向量库即可。下面代码:

  1. 从mysql中获取所有的问题
  2. 遍历所有问答
  3. 把问题作为向量索引,问答的id为标量索引插入向量库中
    当前mysql数据库中有大几千条数据,重新构建向量就耗时10分钟左右。
def rebuild_vector():# 查找所有的数据select_all = qaTable.select_all_qa()# 遍历所有的数据for qa in select_all:insertId = qa[0]question = qa[1]timestamp = int(time.time())print(question)# 计算向量# 更新向量# success, vector = get_vector_from_text(question)# if not success:#     # 向量计算失败,question#     logging.error("向量计算失败,insertId:%s, question:%s", insertId, question)#     continue# # 删除原有的向量# questionCollection.delete_question(insertId)# # 插入新的向量# questionCollection.insert_question(insertId, vector, question, timestamp)myVectorDB.delete_by_id("db-qa", "question_768", str(insertId))myVectorDB.upsert_one("db-qa", "question_768", id=str(insertId), text=question, question=question)return "重建向量库成功"

4、修改后台展示,看下修改后的效果图更换腾讯云向量库

  • 使用的文本转向量的模型是:BGE_BASE_ZH
  • 向量索引是:VectorIndex(name=‘vector’, dimension=768, index_type=IndexType.HNSW, metric_type=MetricType.COSINE, params=HNSWParams(m=16, efconstruction=200))
  • 搜索文本返回结果代表的是相似度,保存在score中。

总结:

  1. 使用腾讯向量数据库要比使用Milvus更加简单易用,无需自己部署服务器。
  2. 腾讯云向量库支持主流Embedding,直接支持文本向量搜索,避免自己部署Embedding模型,并避免调用文本转向量的过程。对于开发者来说非常便利。
    如果是个人,或者小型项目开发,非常值得使用腾讯云数据库。如果是大型项目,不缺钱的话也非常推荐使用腾讯云数据库,稳定、高效且安全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/202782.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SwiftUI】7.预览及其内部机制

上一篇讲到了组件及组件化,从概念和优/缺点两个方向说明了组件化的意义,更为重要的是,组件和组件化是一个在编程领域,放之四海皆可以的概念,理解和运用它是非常必要的,希望大家能掌握。今天我们介绍另一个特…

卸载软件最最最彻底的工具——Uninstall Tool

卸载软件最最最彻底的工具——Uninstall Tool Uninstall Tool 是一款功能强大的专业卸载工具。针对一些普通卸载不彻底的问题,它可以做到最优,比如Matlab等软件的卸载难的问题也可以较好地解决。 它比 Windows 自带的“添加/删除程序”功能快 3 倍&…

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF 文章目录 GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHFPretraining 预训练阶段Supervised FineTuning (SFT&#x…

ChatGLM2-6B微调过程说明文档

参考文档: ChatGLM2-6B 微调(初体验) - 知乎 环境配置 下载anaconda,版本是Anaconda3-2023.03-0-Linux-x86_64.sh,其对应的python版本是3.10,试过3.7和3.11版本的在运行时都报错。 执行下面的命令安装anaconda sh Anaconda3-202…

【自主探索】基于 frontier_exploration 的单个机器人自主探索建图

文章目录 一、概述1、功能2、要求 二、使用方法1、用于运行演示2、用于开发人员2.1. 探索无/地图数据2.2. 使用 /map 数据进行探索 三、提供的组件1、explore_client1.1. 调用的操作1.2. 订阅主题1.3. 发布主题 2、explore_server2.1. 提供的操作2.2. 调用的操作2.3. 调用的服务…

计算机图形学-变换基础

坐标系转换历程模型坐标系 -> 世界坐标系 -> 摄像机坐标系 -> 视口(屏幕)坐标系 变换 仿射变换和线性变换线性:旋转 缩放 镜像 切变放射: 平移 平移 2D变换矩阵 3D变换矩阵 旋转 2D旋转矩阵 //2D 旋转private (float,…

电路 buck-boost相关知识

BUCK-BOOST 文章目录 BUCK-BOOST前言一、DC-DC工作模式电容电感特性伏秒积平衡原理 二、BUCK电路三、BOOST电路四、BUCK-BOOST电路总结 前言 最近需要用到buck-boost相关的电路知识,于是便写下这篇文章复习一下。 一、DC-DC 在学习buck-boost电路之前我们先来看一…

TCP /UDP协议的 socket 调用的过程

在传输层有两个主流的协议 TCP 和 UDP,socket 程序设计也是主要操作这两个协议。这两个协议的区别是什么呢?通常的答案是下面这样的。 TCP 是面向连接的,UDP 是面向无连接的。TCP 提供可靠交付,无差错、不丢失、不重复、并且按序…

独乐乐不如众乐乐(二)-某汽车零部件厂商IC EMC企业规范

前言:该汽车零部件厂商关于IC EMC的规范可能是小编看过的企业标准里要求最明确的一份企业标准了,充分说明了标准方法不是死的,可以灵活应用。 先看看这份规范的抬头: 与其他企业规范一样,该汽车零部件厂商的IC EMC规范…

C语言之内存函数

C语言之内存函数 文章目录 C语言之内存函数1. memcpy 使⽤和模拟实现1.1 memcpy 函数的使用1.3 memcpy的模拟实现 2. memmove 使⽤和模拟实现2.1 memmove 函数的使用2.2 memmove的模拟实现 3. memset 函数的使用4. memcmp 函数的使⽤ 1. memcpy 使⽤和模拟实现 函数声明如下&a…

2023最全的自动化测试入门基础知识(超详细~)

1)首先,什么是自动化测试? 自动化测试是把以人为驱动的测试行为转化为机器执行的一种过程。通常,在设计了测试用例并通过评审之后,由测试人员根据测试用例中描述的过程一步步执行测试,得到实际结果与期望结果的比较。…

【双十一特辑】爱心代码(程序员的浪漫)-李峋

前言 最近《点燃我温暖你》中李峋的爱心代码超级火,看着特别心动,这不,光棍节快到了,给兄弟们教学一波爱心代码,赶在双十一前表白,让这个双十一不在是孤单一个人! 目录 前言 C语言简易爱心代码…

0002Java程序设计-springboot在线考试系统小程序

文章目录 **摘 要****目录**系统实现开发环境 编程技术交流、源码分享、模板分享、网课分享 企鹅🐧裙:776871563 摘 要 本毕业设计的内容是设计并且实现一个基于springboot的在线考试系统小程序。它是在Windows下,以MYSQL为数据库开发平台&…

Java 图片验证码需求分析

💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! 图片验证码 需求分析 连续因输错密码而登录失败时,记录其连续输错密码的累加次数;若在次数小于5时,用户输入正确的密码并成功登录…

微服务负载均衡器Ribbon

1.什么是Ribbon 目前主流的负载方案分为以下两种: 集中式负载均衡,在消费者和服务提供方中间使用独立的代理方式进行负载,有硬件的(比如 F5),也有软件的(比如 Nginx)。 客户端根据…

使用Kibana让es集群形象起来

部署Elasticsearch集群详细步骤参考本人: https://blog.csdn.net/m0_59933574/article/details/134605073?spm1001.2014.3001.5502https://blog.csdn.net/m0_59933574/article/details/134605073?spm1001.2014.3001.5502 kibana部署 es集群设备 安装软件主机名…

MQ-7一氧化碳传感器模块功能实现(STM32)

认识MQ-7模块与其工作原理 首先来认识MQ-7模块,MQ-7可以检测空气中的一氧化碳(CO)浓度。他采用半导体气敏元件来检测CO的气体浓度,其灵敏度高、反应速度快、响应时间短、成本低廉等特点使得它被广泛应用于智能家居、工业自动化、环…

minio客户端基本操作

minio客户端基本操作 桶 创建桶 如果要创建新的桶 输入名称,点击创建即可,默认权限就行 删除桶 点击要删除的桶 点击删除 修改桶 如果哪天需要修改桶的权限或者其他信息,还是先点击这个桶进入详情 然后点击要修改的属性,选择…

Qt5.15.2静态编译 VS2017 with static OpenSSL

几年前编译过一次Qt静态库:VS2015编译Qt5.7.0生成支持XP的静态库,再次编译,毫无压力。 一.环境 系统:Windows 10 专业版 64位 编译器:visual studio 2017 第三方工具:perl,ruby和python python用最新的3.x.x版本也是可以的 这三个工具都需要添加到环境变量,安装时勾选…

JavaScript 的初步学习上篇

JavaScript 的介绍 JavaScript 之父 布兰登 . 艾奇 (Brendan Eich) ,1995 年, 用 10 天时间完成 JavaScript 的设计. JavaScript 和 Java 的关系 两者之间就像老婆和老婆饼的关系,即毫无关系, JavaScript 最初的名字叫LiveScript,为了蹭 Java 热度,才改名为 JavaScript.JavaScr…