利用 OpenCV 进行棋盘检测与透视变换

利用 OpenCV 进行棋盘检测与透视变换

1. 引言

在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于 摄像机标定、文档扫描、增强现实(AR) 等场景。本篇文章将详细介绍如何使用 OpenCV 进行 棋盘检测,并通过 透视变换 将棋盘区域转换为一个标准的矩形图像。

我们将基于一段 Python 代码 进行分析,代码的主要任务包括:

  • 读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)
  • 检测边缘并提取棋盘区域
  • 计算透视变换矩阵并进行变换
  • 展示和保存结果

2. 代码解析

完整代码如下:

import cv2
import numpy as npdef detect_and_transform_chessboard(image_path):# 读取图像img = cv2.imread(image_path)if img is None:print("无法读取图像文件")return# 保存原始图像尺寸original_img = img.copy()# 图像预处理scale_percent = 50width = int(img.shape[1] * scale_percent / 100)height = int(img.shape[0] * scale_percent / 100)img = cv2.resize(img, (width, height))gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 自适应直方图均衡化clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))gray = clahe.apply(gray)# 使用双边滤波减少噪声gray = cv2.bilateralFilter(gray, 11, 17, 17)found = Falseedges = cv2.Canny(gray, 50, 150)contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)if len(contours) > 0:contours = sorted(contours, key=cv2.contourArea, reverse=True)[:5]for contour in contours:epsilon = 0.02 * cv2.arcLength(contour, True)approx = cv2.approxPolyDP(contour, epsilon, True)if len(approx) == 4 and cv2.contourArea(approx) > 1000:cv2.drawContours(img, [approx], -1, (0, 0, 255), 2)corners_pts = approx.reshape(4, 2).astype(np.float32)corners_pts = order_points(corners_pts)found = Truebreakif found and corners_pts is not None:target_size = (400, 400)target_pts = np.array([[0, 0],[target_size[0], 0],[target_size[0], target_size[1]],[0, target_size[1]]], dtype=np.float32)matrix = cv2.getPerspectiveTransform(corners_pts, target_pts)warped = cv2.warpPerspective(img, matrix, target_size)cv2.namedWindow('yuantu', cv2.WINDOW_NORMAL)cv2.imshow('yuantu', img)cv2.namedWindow('zhentu', cv2.WINDOW_NORMAL)cv2.imshow('zhentu', warped)cv2.imwrite('detected_chessboard.png', img)cv2.imwrite('transformed_chessboard.png', warped)else:print("无法进行透视变换:未检测到有效的棋盘角点")cv2.waitKey(0)cv2.destroyAllWindows()def order_points(pts):rect = np.zeros((4, 2), dtype=np.float32)s = pts.sum(axis=1)rect[0] = pts[np.argmin(s)]  # 左上rect[2] = pts[np.argmax(s)]  # 右下diff = np.diff(pts, axis=1)rect[1] = pts[np.argmin(diff)]  # 右上rect[3] = pts[np.argmax(diff)]  # 左下return rectif __name__ == "__main__":image_path = "1.jpg"detect_and_transform_chessboard(image_path)

原图
在这里插入图片描述

代码运行结果图
在这里插入图片描述

在这里插入图片描述

7. 进一步优化与拓展

7.1 多尺度图像处理

在实际应用中,棋盘大小可能存在变形和比例不一致的情况。可以使用图像金字塔(Image Pyramid)来对不同尺度的图像进行分析,提高算法的适应性。

7.2 使用深度学习改进检测

传统的边缘检测和轮廓提取方法对于复杂背景或光照变化较大的情况可能表现不佳。可以尝试使用**深度学习模型(如YOLO或OpenCV DNN模块)**来替代传统的边缘检测方法。

7.3 自动化角点提取优化

目前的角点提取方法依赖 cv2.approxPolyDP(),可以引入更精确的 Harris 角点检测Shi-Tomasi 角点检测,提高精度。

7.4 进一步增强抗噪性

可以引入 cv2.GaussianBlur()cv2.medianBlur() 进一步去除噪声,以便更清晰地检测边缘。

8. 结论

本篇文章介绍了基于 OpenCV 进行棋盘检测与透视变换的方法,详细分析了 图像预处理、边缘检测、透视变换 关键技术,并提供了优化建议。希望对你有所帮助!在实际应用中,可以结合深度学习和图像处理优化,提高检测的精度和鲁棒性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/20383.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL智障离谱问题,删了库确还存在、也不能再创建同名库

1、问题 今天跟后端朋友接毕设单子的时候,后端穿过来的【weather.sql】这个文件没弄好,导致这个【weather】数据库的数据是错的,因此我用datagrip的GUI界面直接右键删除,结果就是tmd删不掉,ok,我只能在那新…

高子昂医编---23岁,医疗编上岸,正式开启养老生活

作为一个只想毕业后就找个稳定工作躺平一生的普通人,直接放弃加入考研考公大军,加入了竞争稍微小一点的考编大军!毕业那年在学校辛苦奋斗四个多月,直接一战上岸!成为了一名有编制的医务工作者!现在在我们家…

【Linux系统】—— 调试器 gdb/cgdb的使用

【Linux系统】—— 调试器 gdb/cgdb的使用 1 前置准备2 快速认识 gdb3 cgdb/gdb 的使用3.1 简单认识 cgdb3.2 打断点 / 删断点3.3 逐过程 / 逐语句3.4 查看变量3.5 快速跳转 4 cgdb/gdb 调试技巧4.1 watch4.2 「set var」确定问题原因4.3 条件断点 5 概念理解6 gdb/cgdb 指令一…

llama.cpp部署 DeepSeek-R1 模型

一、llama.cpp 介绍 使用纯 C/C推理 Meta 的LLaMA模型(及其他模型)。主要目标llama.cpp是在各种硬件(本地和云端)上以最少的设置和最先进的性能实现 LLM 推理。纯 C/C 实现,无任何依赖项Apple 芯片是一流的——通过 A…

【Vue3】Vue 3 中列表排序的优化技巧

本文将深入探讨 Vue 3 中列表排序的优化技巧,帮助提升应用的性能和响应速度。 1. 避免不必要的排序 按需排序 在实际应用中,并非每次数据更新都需要进行排序。例如,当列表数据仅在特定条件下需要排序时,可通过条件判断来避免不…

HaProxy源码安装(Rocky8)

haproxy具有高性能、高可用性、灵活的负载均衡策略和强大的将恐和日志功能,是法国开发者 威利塔罗(Willy Tarreau)在2000年使用C语言开发的一个开源软件,是一款具 备高并发(一万以上)、高性能的TCP和HTTP负载均衡器,支持基于cookie的持久性&a…

调用openssl实现加解密算法

由于工作中涉及到加解密,包括Hash(SHA256)算法、HMAC_SHA256 算法、ECDH算法、ECC签名算法、AES/CBC 128算法一共涉及5类算法,笔者通过查询发现openssl库以上算法都支持,索性借助openssl库实现上述5类算法。笔者用的op…

1-13 tortoiseGit忽略文件与文件夹

前言: 基于本人对小乌龟操作的学习和思考,仅供参考 1-1 忽略问价和文件夹 有时候我们的一些文件是不想要提交,那么我们可以使用stash的方式给这个文件添加忽略,那么我们现在来给这个实际操作创建一个操作的环境。 右键选中添加到忽…

✨2.快速了解HTML5的标签类型

✨✨HTML5 的标签类型丰富多样&#xff0c;每种类型都有其独特的功能和用途&#xff0c;以下是一些常见的 HTML5 标签类型介绍&#xff1a; &#x1f98b;结构标签 &#x1faad;<html>&#xff1a;它是 HTML 文档的根标签&#xff0c;所有其他标签都包含在这个标签内&am…

PostgreSQL 的崛起与无服务器数据库的新时代

根据 2023 年 Stack Overflow 开发人员调查 &#xff0c;PostgreSQL 超越 MySQL 成为最受开发人员推崇和期望的数据库系统&#xff0c;这是一个重要的里程碑。这一转变反映了开发人员社区对 PostgreSQL 强大的功能集、可靠性和可扩展性的日益认同。 这种不断变化的格局激发了数…

Redis(高阶篇)03章——缓存双写一致性之更新策略探讨

一、反馈回来的面试题 一图你只要用缓存&#xff0c;就可能会涉及到redis缓存与数据库双存储双写&#xff0c;你只要是双写&#xff0c;就一定会有数据一致性的问题&#xff0c;那么你如何解决一致性的问题双写一致性&#xff0c;你先动缓存redis还是数据库mysql哪一个&#x…

【机器学习监督学习】:从原理到实践,探索算法奥秘,揭示数据标注、模型训练与预测的全过程,助力人工智能技术应用与发展

&#x1f31f;个人主页&#xff1a;落叶 &#x1f31f;当前专栏:机器学习专栏 目录 线性回归&#xff08;Linear Regression&#xff09; 基本概念 数学模型 优缺点 利用Python实现线性回归 逻辑回归&#xff08;Logistic Regression&#xff09; 3.2. 数学模型 优缺点 …

数据结构_前言

本次我们将进入一个新的阶段啦~ 要注意哦&#xff1a; 在学数据结构之前&#xff0c;我们要先掌握c语言中所学的指针、结构体、内存的存储这几部分&#xff0c;如果还没太掌握的话&#xff0c;那记得去复习回顾一下噢。 下面我们就一起进入数据结构的学习吧&#xff01; 知识…

VirtualBox 中使用 桥接网卡 并设置 MAC 地址

在 VirtualBox 中使用 桥接网卡 并设置 MAC 地址&#xff0c;可以按照以下步骤操作&#xff1a; 步骤 1&#xff1a;设置桥接网卡 打开 VirtualBox&#xff0c;选择你的虚拟机&#xff0c;点击 “设置” (Settings)。进入 “网络” (Network) 选项卡。在 “适配器 1” (Adapt…

【Mysql】索引

【Mysql】索引 一、索引的简介二、索引结构2.1 Hash2.2 二叉搜索树2.3 B树2.4 B树 三、索引分类3.1 主键索引3.2 普通索引3.3 唯一索引3.4 全文索引3.5 聚集索引3.6 非聚集索引3.7 索引覆盖 四、使用索引4.1 自动创建索引4.2 手动创建索引4.2.1 主键索引4.2.2 唯一索引4.2.3 普…

超全Deepseek资料包,deepseek下载安装部署提示词及本地部署指南介绍

该资料包涵盖了DeepSeek模型的下载、安装、部署以及本地运行的详细指南&#xff0c;适合希望在本地环境中高效运行DeepSeek模型的用户。资料包不仅包括基础的安装步骤&#xff0c;还提供了68G多套独立部署视频教程教程&#xff0c;针对不同硬件配置的模型选择建议&#xff0c;以…

1、Window Android 13模拟器 将编译的映像文件导入Android Studio

1、环境准备 编译环境&#xff1a;Ubuntu-18.04.5编译版本&#xff1a;android13-release下载地址&#xff1a;清华大学开源软件镜像站AOSP # 下载repo # 同步代码&#xff1a;repo init -u https://mirrors.tuna.tsinghua.edu.cn/git/AOSP/platform/manifest -b android13-r…

UE5 Niagara 粒子远处闪烁解决

在UE5.2中使用Niagara粒子系统制作水特效时&#xff0c;远处出现粒子闪烁的问题&#xff0c;通常由渲染精度、深度冲突或LOD设置引起 .效果如下&#xff1a; 处理深度缓冲冲突&#xff08;Z-Fighting&#xff09; 问题原因&#xff1a;粒子与场景几何体深度值重叠导致闪烁。 …

机器学习入门实战 4 - 基本模型

&#x1f4cc; 机器学习基本模型项目实战&#xff1a;预测泰坦尼克号乘客的生存概率 &#x1f6a2; 项目背景 1912 年 4 月 15 日&#xff0c;泰坦尼克号在处女航中撞上冰山沉没&#xff0c;船上 2224 名乘客和船员中&#xff0c;仅有约 710 人生还。 哪些因素决定了生还几率&…

电子制造企业数字化转型实战:基于Odoo构建MES平台的深度解决方案

作者背景 拥有8年乙方项目经理经验、8年甲方信息化管理经验&#xff0c;主导过12个Odoo制造业项目落地&#xff0c;服务客户涵盖消费电子、汽车电子、工业设备等领域。本文基于华东某电子企业&#xff08;以下简称"A公司"&#xff09;的实战案例&#xff0c;解析行业…