一.AI大模型开发-初识机器学习

机器学习基本概念

前言

本文主要介绍了深度学习基础,包括机器学习、深度学习的概念,机器学习的两种典型任务分类任务和回归任务,机器学习中的基础名词解释以及模型训练的基本流程等。

一.认识机器学习

1.人工智能和机器学习

人工智能(Artificial Intelligence,简称AI) 是指由计算机系统所表现出的智能行为。它是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的学科。人工智能的目标是使机器能够执行通常需要人类智能才能完成的任务,如学习、推理、解决问题、理解语言、识别图像等

人工智能的关键技术包括:

  • 机器学习(Machine Learning, ML):通过数据训练模型,使计算机能够从经验中学习并改进性能。
  • 深度学习(Deep Learning):一种特殊的机器学习方法,使用多层神经网络来处理复杂的数据模式。
  • 自然语言处理(Natural Language Processing, NLP):使计算机能够理解和生成人类语言。
  • 计算机视觉(Computer Vision*:让计算机能够“看”和解释图像或视频内容。
  • 强化学习(Reinforcement Learning):通过奖励和惩罚机制来训练AI系统做出最优决策。

机器学习是一种通过大量数据去迭代逼近未知参数的最优解的方法。 深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络。

在这里插入图片描述

人工智能已经广泛应用于多个行业,如医疗、金融、交通、娱乐、教育等。常见的应用场景包括自动驾驶汽车、智能客服、个性化推荐、疾病诊断、语音助手等。

2.机器如何学习

机器学习是对人脑学习的模拟,人类通过学习在大脑中形成对事物的认知,也就是知识,当大脑接受到新的问题时能够根据自身的认知和经验给出答案。那么机器也是一样,我们对AI提供大量的数据进行学习和反复训练那么AI也能够形成一套“知识”体系。当输入新的数据给AI那么它就能根据自己的“知识”体系给出较为精准的结果,如下:

在这里插入图片描述

3.什么是神经网络

深度学习和机器学习最大的区别是深度学习引入了神经网络,神经网络的构建是通过模拟人类神经元之间的信息传递过程。

人体大脑学习过程是通过感觉器官接收外界刺激信息,如视觉、听觉、触觉等,这些信息转化为神经信号传递到大脑,神经信号在神经元之间通过突触进行传导。 神经元是主要由树突、轴突、突出组成,树突是从上面接收很多信号,经过轴突处理后传递给突触,突触会进行选择性向下一级的树突传递信号。

通过这种方式,神经元之间形成了复杂的连接网络,使得大脑能够进行信息的传递、整合和处理,以实现各种认知、情感和行为功能。此外,突触在学习、记忆等过程中还可以发生动态的变化和重塑,以适应新的经验和环境需求。
在这里插入图片描述

那么神经网络模拟的就是神经元之间的信息传递过程,每个神经网络单元抽象出来一种=数学MP模型,也叫感知器,它接收多个输入(x1,x2,x3…),产生一个输出 即 y= W1X1+W2X2+W3X3+…+WnXn + b。

这就好比是神经末梢感受各种外部环境的变化(感知外部刺激),产生不同的电信号(也就是输入:x1,x2,x3…xn),这些强度不同(也就是参数w1,w2,w3…wn)的电信号汇聚到一起,会改变这些神经元内的电位,如果神经元的电位超过了一个“阈值”(参数 b),它就会被激活(激活函数),即“兴奋”起来,向其他神经元发送化学物质。

下面是MP模型示例图,它是麦卡洛克一皮茨模型(McCulloch-Pitts model )简称,一种早期的神经元网络模型.
在这里插入图片描述
MP模型由美国神经生理学家麦卡洛克(McCulloch, W.)和数学家皮茨 <Pitts,W.)于1943年共同提出。设有n个神经元相互连结,每个神经元的状态Si (i=1,2,…,n)取值0或1,分别表示该神经元的抑制和兴奋,每个神经元的状态都受其他神经元的制约,B是第i个神经元的阂值,W是神经元i与神经元j之间的连结强度。

MP模型过程:

  1. 每个神经元都是一个多输入端如x1,x2,x3
  2. 每个输入都会乘以权重w1,w2,w3,再加一个阈值 b
  3. 最后我们会得到 y = w1x1 + w2x2 + w3x3 + b,最终我们得到一个值 y
  4. 得到这个值后是否会向下游输出则取决于激活函数f(x)
  5. 向下游输出的结果Oj的值要么是0,要么是1。

激活函数

激活函数:就是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。

如果不用激活函数:每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,这种情况就是最原始的感知机(Perceptron)。 如果使用激活函数:激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。

单个的感知器(也叫单感知机)就构成了一个简单的模型(MP模型),但在现实世界中,实际的决策模型则要复杂得多,往往是由多个感知器组成的多层网络,如下图所示,这也是经典的神经网络模型(也叫多感知机),由输入层、隐含层、输出层构成。

4.机器学习的两种任务

机器学习的典型任务可以分为:分类任务 和 回归任务,分类任务:找到分类边界,将不同类型的数据划分开。回归任务:通过模型拟合数据点分布,预测新数据的值。分类任务输出离散值,回归任务输出连续值。

分类任务: 是根据每个样本的值特征预测该样本属于类型A、类型B还是类型C,例如情感分类、内容审核,相当于学习了一个分类边界(决策边界),用分类边界把不同类别的数据区分开来。

回归任务:是对连续值进行预测,根据每个样本的值特征预测该样本的具体数值,例如房价预测,股票预测等,相当于学习到了这一组数据背后的分布,能够根据数据的输入预测该数据的取值。

在这里插入图片描述
分类模型只能输出对与错,通常用来将预测结果是将样本划分到某个特定类别,而回归模型输出的数据的预测值,例如,判断一个水果是苹果还是橙子用分类模型,而预测明天的气温是多少度则用回归模型。

5.有监督学习和无监督学习

为什么要分有监督和无监督:当训练员训练小狗的时候,如果小狗做出了一个正确的动作,都会奖励一个实物给小狗来标记一个正确的信号,模型训练也是如此:我们需要通过真实数据去标注模型的预测值是否正确,或者误差值是多少,这个就是有监督学习,有监督和无监督区别如下:

有监督学习:监督学习利用大量的标注数据来训练模型,对模型的预测值和数据的真实标签计算损失,然后将误差进行反向传播(计算梯度、更新参数),通过不断的学习,最终可以获得识别新样本的能力。

每条数据都有正确答案,通过模型预结果与正确答案的误差不断优化模型参数

无监督学习:无监督学习不依赖任何标签值,通过对数据内在特征的挖掘,找到样本间的关系,比如聚类相关的任务。有监督和无监督最主要的区别在于模型在训练时是否需要人工标注的标签信息。

只有数据没有答案,常见的是聚类算法,通过衡量样本之间的距离来划分类別

6.什么是模型

模型可以通过对海量数据的学习,吸收数据里面的“知识”。然后,再对知识进行运用,例如回答问题、创造内容等,所谓模型,就是一个包含了大量未知参数的函数,给函数输入数据生成输出,所谓训练,就是通过大量的数据去迭代逼近这些未知参数的最优解。

为什么要训练模型?如果我们对模型提供不同领域的数据进行训练那么他们能够预测的数据范围也就不一样。比如:我们使用法律相关的数据进行训练,那么当你在询问它法律的问题时他就能给出较为精准的答案,当你问他医疗的问题它肯定就无法给出你想要的答案了。

就好比一只小狗你训练它跳火圈,那么它就只会跳火圈,你训练它学猫叫他它就会学猫叫,AI也是一样,这样就形成了一个一个的“模型”,有些模型的能力是绘图,有些模型的能力是对话,就看你怎么训练它。

如果你们公司希望大模型能够针对于你们自己的业务和数据做出精准的预测值,那么就需要通过你们公司自己的大量数据去训练,这也就是为什么企业都需要自己去部署和训练模型,因为市面上的模型不一定适用于你们公司的业务。

大模型(Large Model) 是指参数量非常庞大、规模远超传统模型的人工智能模型。这类模型通常具有数以亿计甚至数以万亿计的参数,能够在多种任务上表现出卓越的性能和通用性。大模型通过大量的数据训练,能够捕捉到复杂的数据模式和语义信息,从而在自然语言处理、计算机视觉、语音识别等领域展现出强大的能力。

我们现在口头上常说的大模型,实际上特指大模型的其中一类,也是用得最多的一类——语言大模型(Large Language Model,也叫大语言模型,简称LLM)。
除了语言大模型之外,还有视觉大模型、多模态大模型等。现在,包括所有类别在内的大模型合集,被称为广义的大模型。而语言大模型,被称为狭义的大模型

7.大模型训练流程

如果想要大模型如同人脑一样给出精准结果,那么需要提供大量数据进行“投喂”(学习),并且需要“标记”模型给出的答案是否“正确”,我们把学习的过程,我们称之为训练,运用的过程,则称之为推理。比如:我给大模型投喂的数据是"1+1=?" , 然后给出正确值为 2,那么大模型就学习到1+1=2,那么当你对他提出问题“1+1=?”,那么它可能就会给出推理的值2,下面是大模型学习和训练的过程:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/20506.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

冒险岛079 V8 整合版源码搭建教程+IDEA启动

今天教大家来部署下一款超级怀旧游戏冒险岛&#xff0c;冒险岛源码是开源的&#xff0c;但是开源的代码会有各种&#xff0c;本人进行了加工整合&#xff0c;并且用idea进行了启动测试&#xff0c;经过修改后没有任何问题。 启动截图 后端控制台 前端游戏界面 声明 冒险岛源码…

【操作系统】操作系统概述

操作系统概述 1.1 操作系统的概念1.1.1 操作系统定义——什么是OS&#xff1f;1.1.2 操作系统作用——OS有什么用&#xff1f;1.1.3 操作系统地位——计算机系统中&#xff0c;OS处于什么地位&#xff1f;1.1.4 为什么学操作系统&#xff1f; 1.2 操作系统的历史1.2.1 操作系统…

单元测试junit5

一、idea 安装自动化生成插件jcode5 安装可能不成功&#xff0c;尝试多次安装&#xff1b; 安装成功后&#xff0c;重启idea&#xff0c;再次确认安装是否成功&#xff1b; 二、在需要生成单元测试代码的模块的pom中引入依赖 ......<parent><groupId>org.springf…

mysql主从配置(2025)

一、配置主服务器 编辑主mysql配置文件my.cnf&#xff08;vim /etc/my.cnf&#xff09;&#xff0c;在[mysqld]下添加 [mysqld] # 配置主ID,必须在所有参与主从复制的数据库保证唯一 server-id1 # 打开二进制日志 log-bin/var/lib/mysql/mysql-bin.log # 只允许同步ente_dat…

6.2.图的存储结构-邻接矩阵法

一.邻接矩阵法存储不带权图&#xff1a; 结点不带权值&#xff1a; 1.左图的无向图中&#xff0c;A到B直达的有一条路&#xff0c;所以A行B列的值为1&#xff1b; 左图的无向图中&#xff0c;A到F没有直达的路&#xff0c;所以A行F列的值为0&#xff1b; 结论&#xff1a;无…

1-知识图谱-概述和介绍

知识图谱&#xff1a;浙江大学教授 陈华军 知识图谱 1课时 http://openkg.cn/datasets-type/ 知识图谱的价值 知识图谱是有什么用&#xff1f; 语义搜索 问答系统 QA问答对知识图谱&#xff1a;结构化图 辅助推荐系统 大数据分析系统 自然语言理解 辅助视觉理解 例…

【C语言】C语言 食堂自动化管理系统(源码+数据文件)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;专__注&#x1f448;&#xff1a;专注主流机器人、人工智能等相关领域的开发、测试技术。 【C语言】C语言 食堂自动化管理系统&#xff08;源…

C#之上位机开发---------C#通信库及WPF的简单实践

〇、上位机&#xff0c;分层架构 界面层 要实现的功能&#xff1a; 展示数据 获取数据 发送数据 数据层 要实现的功能&#xff1a; 转换数据 打包数据 存取数据 通信层 要实现的功能&#xff1a; 打开连接 关闭连接 读取数据 写入数据 实体类 作用&#xff1a; 封装数据…

网络编程(24)——实现带参数的http-get请求

文章目录 二十四、day241. char 转为16进制2. 16进制转为 char3. URL 编码函数4. URL 解码函数5. 实现 get 请求参数的解析6. 测试 二十四、day24 我们在前文通过beast实现了http服务器的简单搭建&#xff0c;但是有很多问题我们并没有解决。 在前文中&#xff0c;我们的 get…

机器学习_18 K均值聚类知识点总结

K均值聚类&#xff08;K-means Clustering&#xff09;是一种经典的无监督学习算法&#xff0c;广泛应用于数据分组、模式识别和降维等领域。它通过将数据划分为K个簇&#xff0c;使得簇内相似度高而簇间相似度低。今天&#xff0c;我们就来深入探讨K均值聚类的原理、实现和应用…

LeetCode1287

LeetCode1287 目录 题目描述示例思路分析代码段代码逐行讲解复杂度分析总结的知识点整合总结 题目描述 给定一个非递减的整数数组 arr&#xff0c;其中有一个元素恰好出现超过数组长度的 25%。请你找到并返回这个元素。 示例 示例 1 输入: arr [1, 2, 2, 6, 6, 6, 6, 7,…

恒创科技:如何重新启动 Windows 服务器

重新启动 Windows 服务器对于应用更新、解决问题和维护系统性能至关重要。定期重新启动有助于确保服务器运行最新软件、解决冲突并清除临时文件。本教程将介绍如何使用不同的方法重新启动 Windows 服务器。 注意&#xff1a;重新启动服务器之前保存所有工作&#xff0c;以避免丢…

Django ModelForm使用(初学)

1.目的是根据员工表字段&#xff0c;实现一个新增员工的数据填写页面 2.在views.py文件中按下面的格式写 定义 ModelForm 类&#xff1a;UserModelForm &#xff08;自己命名的类名&#xff09;使用时需要导入包 定义视图函数&#xff1a;user_model_form_add&#xff08;在函…

华为固态电池引发的思索

华为固态电池真牛&#xff01; 超长续航&#xff1a;单次充电即可行驶3000公里 极速充电&#xff1a;五分钟内充满80% 极致安全&#xff1a;不可燃、不漏液 长寿命设计&#xff1a;循环寿命达10000次以上 如上是华为电池展示的优势项&#xff0c;每一条都让我们心动不已。…

美信监控易:运维新时代,守护数据安全

在 2025 年这个科技飞速发展的时代&#xff0c;数据安全已成为各行业关注的焦点。随着云计算、大数据、物联网等技术的不断推进&#xff0c;运维数据的保护面临着新的挑战与要求。美信时代公司的美信监控易运维管理软件&#xff0c;以其卓越的功能、特性和竞争力&#xff0c;为…

个人博客5年回顾

https://huangtao01.github.io/ 五年前&#xff0c;看程序羊的b站视频做的blog&#xff0c;受限于网络&#xff0c;只能单向学习&#xff0c;没有人指导与监督&#xff0c;从来没有想过&#xff0c;有没有什么问题&#xff1f; 一、为什么要做个人博客&#xff1f; 二、我是怎么…

Unity合批处理优化内存序列帧播放动画

Unity合批处理序列帧优化内存 介绍图片导入到Unity中的处理Unity中图片设置处理Unity中图片裁剪 创建序列帧动画总结 介绍 这里是针对Unity序列帧动画的优化内容&#xff0c;将多个图片合批处理然后为了降低Unity的内存占用&#xff0c;但是相对的质量也会稍微降低。可自行进行…

【Docker】容器被停止/删除的方式及命令:全面解析与实践指南

文章目录 引言一、容器的生命周期二、停止容器的命令及方式1. docker stop 命令2. docker kill 命令3. docker pause 和 docker unpause 命令4. docker restart 命令 三、删除容器的命令及方式1. docker rm 命令2. docker container prune 命令3. docker rm 与 docker rmi 的区…

大数据SQL调优专题——Flink执行原理

引入 上一篇我们了解了Spark&#xff0c;相比起MapReduce来说&#xff0c;它确实已经快了超级多了&#xff0c;但是人类的欲望是没有止境的&#xff0c;这也是推动人类进步的动力。 Flink就是为了满足实时响应的场景需求诞生的。 其实在Flink之前&#xff0c;实时处理其实已…

【Cocos TypeScript 零基础 16.1】

目录 FlappyBird背景其他心得_刚体audio部分 FlappyBird 本人没有按照老师的做法去做,大体差不多, 当然老师做的更精细,有些不会的还是参考老师的方法 参考部分 小鸟如何像真实物体一样的重力效果点击如何使小鸟飞翔 省略部分 3. 小鸟多动画(飞机大战其实有做,单纯偷懒) 4. …