6.1 Windows驱动开发:内核枚举SSDT表基址

SSDT表(System Service Descriptor Table)是Windows操作系统内核中的关键组成部分,负责存储系统服务调用的相关信息。具体而言,SSDT表包含了系统调用的函数地址以及其他与系统服务相关的信息。每个系统调用对应SSDT表中的一个表项,其中存储了相应系统服务的函数地址。SSDT表在64位和32位系统上可能有不同的结构,但通常以数组形式存在。

对于系统调用的监控、分析或修改等高级操作,常需要内核枚举SSDT表基址。这一操作通常通过内核模块实现,涉及技术手段如逆向工程和Hooking。

看一款闭源ARK工具的枚举效果:

直接步入正题,首先SSDT表中文为系统服务描述符表,SSDT表的作用是把应用层与内核联系起来起到桥梁的作用,枚举SSDT表也是反内核工具最基本的功能,通常在64位系统中要想找到SSDT表,需要先找到KeServiceDescriptorTable这个函数,由于该函数没有被导出,所以只能动态的查找它的地址,庆幸的是我们可以通过查找msr(c0000082)这个特殊的寄存器来替代查找KeServiceDescriptorTable这一步,在新版系统中查找SSDT可以归纳为如下这几个步骤。

  • rdmsr c0000082 -> KiSystemCall64Shadow -> KiSystemServiceUser -> SSDT

首先第一步通过rdmsr C0000082 MSR寄存器得到KiSystemCall64Shadow的函数地址,计算KiSystemCall64ShadowKiSystemServiceUser偏移量,如下图所示。

  • 得到相对偏移6ed53180(KiSystemCall64Shadow) - 6ebd2a82(KiSystemServiceUser) = 1806FE
  • 也就是说 6ed53180(rdmsr) - 1806FE = KiSystemServiceUser

如上当我们找到了KiSystemServiceUser的地址以后,在KiSystemServiceUser向下搜索可找到KiSystemServiceRepeat里面就是我们要找的SSDT表基址。

其中fffff8036ef8c880则是SSDT表的基地址,紧随其后的fffff8036ef74a80则是SSSDT表的基地址。

那么如果将这个过程通过代码的方式来实现,我们还需要使用《内核枚举IoTimer定时器》中所使用的特征码定位技术,如下我们查找这段特征。

#include <ntifs.h>
#pragma intrinsic(__readmsr)ULONGLONG ssdt_address = 0;// 获取 KeServiceDescriptorTable 首地址
ULONGLONG GetLySharkCOMKeServiceDescriptorTable()
{// 设置起始位置PUCHAR StartSearchAddress = (PUCHAR)__readmsr(0xC0000082) - 0x1806FE;// 设置结束位置PUCHAR EndSearchAddress = StartSearchAddress + 0x100000;DbgPrint("[LyShark Search] 扫描起始地址: %p --> 扫描结束地址: %p \n", StartSearchAddress, EndSearchAddress);PUCHAR ByteCode = NULL;UCHAR OpCodeA = 0, OpCodeB = 0, OpCodeC = 0;ULONGLONG addr = 0;ULONG templong = 0;for (ByteCode = StartSearchAddress; ByteCode < EndSearchAddress; ByteCode++){// 使用MmIsAddressValid()函数检查地址是否有页面错误if (MmIsAddressValid(ByteCode) && MmIsAddressValid(ByteCode + 1) && MmIsAddressValid(ByteCode + 2)){OpCodeA = *ByteCode;OpCodeB = *(ByteCode + 1);OpCodeC = *(ByteCode + 2);// 对比特征值 寻找 nt!KeServiceDescriptorTable 函数地址/*nt!KiSystemServiceRepeat:fffff803`6ebd2b94 4c8d15e59c3b00  lea     r10,[nt!KeServiceDescriptorTable (fffff803`6ef8c880)]fffff803`6ebd2b9b 4c8d1dde1e3a00  lea     r11,[nt!KeServiceDescriptorTableShadow (fffff803`6ef74a80)]fffff803`6ebd2ba2 f7437880000000  test    dword ptr [rbx+78h],80hfffff803`6ebd2ba9 7413            je      nt!KiSystemServiceRepeat+0x2a (fffff803`6ebd2bbe)  Branch*/if (OpCodeA == 0x4c && OpCodeB == 0x8d && OpCodeC == 0x15){// 获取高位地址fffff802memcpy(&templong, ByteCode + 3, 4);// 与低位64da4880地址相加得到完整地址addr = (ULONGLONG)templong + (ULONGLONG)ByteCode + 7;return addr;}}}return  0;
}VOID UnDriver(PDRIVER_OBJECT driver)
{DbgPrint(("驱动程序卸载成功! \n"));
}NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
{DbgPrint("hello lyshark");ssdt_address = GetLySharkCOMKeServiceDescriptorTable();DbgPrint("[LyShark] SSDT = %p \n", ssdt_address);DriverObject->DriverUnload = UnDriver;return STATUS_SUCCESS;
}

如上代码中所提及的步骤我想不需要再做解释了,这段代码运行后即可输出SSDT表的基址。

如上通过调用GetLySharkCOMKeServiceDescriptorTable()得到SSDT地址以后我们就需要对该地址进行解密操作。

得到ServiceTableBase的地址后,就能得到每个服务函数的地址。但这个表存放的并不是SSDT函数的完整地址,而是其相对于ServiceTableBase[Index]>>4的数据,每个数据占四个字节,所以计算指定Index函数完整地址的公式是;

  • 在x86平台上: FuncAddress = KeServiceDescriptorTable + 4 * Index
  • 在x64平台上:FuncAddress = [KeServiceDescriptorTable+4*Index]>>4 + KeServiceDescriptorTable

如下汇编代码就是一段解密代码,代码中rcx寄存器传入SSDT的下标,而rdx寄存器则是传入SSDT表基址。

  48:8BC1                  | mov rax,rcx                             |  rcx=index4C:8D12                  | lea r10,qword ptr ds:[rdx]              |  rdx=ssdt8BF8                     | mov edi,eax                             |C1EF 07                  | shr edi,7                               |83E7 20                  | and edi,20                              |4E:8B1417                | mov r10,qword ptr ds:[rdi+r10]          |4D:631C82                | movsxd r11,dword ptr ds:[r10+rax*4]     |49:8BC3                  | mov rax,r11                             |49:C1FB 04               | sar r11,4                               |4D:03D3                  | add r10,r11                             |49:8BC2                  | mov rax,r10                             |C3                       | ret                                     |

有了解密公式以后代码的编写就变得很容易,如下是读取SSDT的完整代码。

#include <ntifs.h>
#pragma intrinsic(__readmsr)typedef struct _SYSTEM_SERVICE_TABLE
{PVOID     ServiceTableBase;PVOID     ServiceCounterTableBase;ULONGLONG   NumberOfServices;PVOID     ParamTableBase;
} SYSTEM_SERVICE_TABLE, *PSYSTEM_SERVICE_TABLE;ULONGLONG ssdt_base_aadress;
PSYSTEM_SERVICE_TABLE KeServiceDescriptorTable;typedef UINT64(__fastcall *SCFN)(UINT64, UINT64);
SCFN scfn;// 解密算法
VOID DecodeSSDT()
{UCHAR strShellCode[36] = "\x48\x8B\xC1\x4C\x8D\x12\x8B\xF8\xC1\xEF\x07\x83\xE7\x20\x4E\x8B\x14\x17\x4D\x63\x1C\x82\x49\x8B\xC3\x49\xC1\xFB\x04\x4D\x03\xD3\x49\x8B\xC2\xC3";/*48:8BC1                  | mov rax,rcx                             |  rcx=index4C:8D12                  | lea r10,qword ptr ds:[rdx]              |  rdx=ssdt8BF8                     | mov edi,eax                             |C1EF 07                  | shr edi,7                               |83E7 20                  | and edi,20                              |4E:8B1417                | mov r10,qword ptr ds:[rdi+r10]          |4D:631C82                | movsxd r11,dword ptr ds:[r10+rax*4]     |49:8BC3                  | mov rax,r11                             |49:C1FB 04               | sar r11,4                               |4D:03D3                  | add r10,r11                             |49:8BC2                  | mov rax,r10                             |C3                       | ret                                     |*/scfn = ExAllocatePool(NonPagedPool, 36);memcpy(scfn, strShellCode, 36);
}// 获取 KeServiceDescriptorTable 首地址
ULONGLONG GetKeServiceDescriptorTable()
{// 设置起始位置PUCHAR StartSearchAddress = (PUCHAR)__readmsr(0xC0000082) - 0x1806FE;// 设置结束位置PUCHAR EndSearchAddress = StartSearchAddress + 0x8192;DbgPrint("扫描起始地址: %p --> 扫描结束地址: %p \n", StartSearchAddress, EndSearchAddress);PUCHAR ByteCode = NULL;UCHAR OpCodeA = 0, OpCodeB = 0, OpCodeC = 0;ULONGLONG addr = 0;ULONG templong = 0;for (ByteCode = StartSearchAddress; ByteCode < EndSearchAddress; ByteCode++){// 使用MmIsAddressValid()函数检查地址是否有页面错误if (MmIsAddressValid(ByteCode) && MmIsAddressValid(ByteCode + 1) && MmIsAddressValid(ByteCode + 2)){OpCodeA = *ByteCode;OpCodeB = *(ByteCode + 1);OpCodeC = *(ByteCode + 2);// 对比特征值 寻找 nt!KeServiceDescriptorTable 函数地址// lyshark// 4c 8d 15 e5 9e 3b 00  lea r10,[nt!KeServiceDescriptorTable (fffff802`64da4880)]// 4c 8d 1d de 20 3a 00  lea r11,[nt!KeServiceDescriptorTableShadow (fffff802`64d8ca80)]if (OpCodeA == 0x4c && OpCodeB == 0x8d && OpCodeC == 0x15){// 获取高位地址fffff802memcpy(&templong, ByteCode + 3, 4);// 与低位64da4880地址相加得到完整地址addr = (ULONGLONG)templong + (ULONGLONG)ByteCode + 7;return addr;}}}return  0;
}// 得到函数相对偏移地址
ULONG GetOffsetAddress(ULONGLONG FuncAddr)
{ULONG dwtmp = 0;PULONG ServiceTableBase = NULL;if (KeServiceDescriptorTable == NULL){KeServiceDescriptorTable = (PSYSTEM_SERVICE_TABLE)GetKeServiceDescriptorTable();}ServiceTableBase = (PULONG)KeServiceDescriptorTable->ServiceTableBase;dwtmp = (ULONG)(FuncAddr - (ULONGLONG)ServiceTableBase);return dwtmp << 4;
}// 根据序号得到函数地址
ULONGLONG GetSSDTFunctionAddress(ULONGLONG NtApiIndex)
{ULONGLONG ret = 0;if (ssdt_base_aadress == 0){// 得到ssdt基地址ssdt_base_aadress = GetKeServiceDescriptorTable();}if (scfn == NULL){DecodeSSDT();}ret = scfn(NtApiIndex, ssdt_base_aadress);return ret;
}VOID UnDriver(PDRIVER_OBJECT driver)
{DbgPrint(("驱动程序卸载成功! \n"));
}NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
{DbgPrint("hello lyshark \n");ULONGLONG ssdt_address = GetKeServiceDescriptorTable();DbgPrint("SSDT基地址 = %p \n", ssdt_address);// 根据序号得到函数地址ULONGLONG address = GetSSDTFunctionAddress(51);DbgPrint("[LyShark] NtOpenFile地址 = %p \n", address);// 得到相对SSDT的偏移量DbgPrint("函数相对偏移地址 = %p \n", GetOffsetAddress(address));DriverObject->DriverUnload = UnDriver;return STATUS_SUCCESS;
}

运行后即可得到SSDT下标为51的函数也就是得到NtOpenFile的绝对地址和相对地址。

你也可以打开ARK工具,对比一下是否一致,如下图所示,LyShark的代码是没有任何问题的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/206849.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android中实现RecyclerView,并对item及其多个子控件的点击事件监听

目录 背景 实现RecyclerView 第一步、 新建item的xml 第二步、在activity的布局中引入 RecyclerView 第三步、新建一个adapter 第四步、在activity中初始化绑定adapter即可 实现item及其多个子组件点击事件监听 第一步、 适配器中创建监听对象 第二步、适配器中绑定监听…

搭建测试平台开发(一):Django基本配置与项目创建

一、安装Django最新版本 1 pip install django二、创建Django项目 首先进入要存放项目的目录&#xff0c;再执行创建项目的命令 1 django-admin startproject testplatform三、Django项目目录详解 1 testplatform 2 ├── testplatform  # 项目的容器 3 │ ├── …

提升技能素养,AMCAP做出合适的决策

近年来&#xff0c;智能配置投资与理财逐渐受到关注并走俏。这是一种简单快捷的智慧化理财方式&#xff0c;通过将个人和家族的闲置资金投入到低风险高流动性的产品中。 国际财富管理投资机构AMCAP集团金融分析师表示&#xff1a;智能配置投资与理财之所以持续走俏&#xff0c…

如何选择共模噪声滤波器

在当前电子产品中&#xff0c;绝大多数的高速信号都使用地差分对结构。 差分结构有一个好处就是可以降低外界对信号的干扰&#xff0c;但是由于设计的原因&#xff0c;在传输结构上还会受到共模噪声的影响。 共模噪声滤波器就可以用于抑制不必要的共模噪声&#xff0c;而不会对…

什么是网络攻击?阿里云服务器可以避免被攻击吗?

网络攻击是指:损害网络系统安全属性的任何类型的进攻动作。进攻行为导致网络系统的机密性、完整性、可控性、真实性、抗抵赖性等受到不同程度的破坏。 网络攻击有很多种&#xff0c;网络上常见的攻击有DDOS攻击、CC攻击、SYN攻击、ARP攻击以及木马、病毒等等&#xff0c;所以再…

算法:Java计算二叉树从根节点到叶子结点的最大路径和

要求从根节点到叶子结点的最大路径和&#xff0c;可以通过递归遍历二叉树来实现。对于二叉树中的每个节点&#xff0c;我们都可以考虑包含该节点的最大路径和。在递归的过程中&#xff0c;我们需要不断更新全局最大路径和。 具体的思路 递归函数设计&#xff1a; 设计一个递归函…

蓝桥杯day02——第三大的数

题目 给你一个非空数组&#xff0c;返回此数组中 第三大的数 。如果不存在&#xff0c;则返回数组中最大的数。 示例 1&#xff1a; 输入&#xff1a;[3, 2, 1] 输出&#xff1a;1 解释&#xff1a;第三大的数是 1 。 示例 2&#xff1a; 输入&#xff1a;[1, 2] 输出&…

02-鸿蒙学习之4.0todoList练习

02-鸿蒙学习之4.0todoList练习 代码 /*** 1:组件必须使用Component装饰* 2.Entry 装饰哪个组件&#xff0c;哪个组件就呈现在页面上* 3.被Entry 装饰的入口组件。build&#xff08;&#xff09;必须有且仅有一个根 ** 容器 ** 组件* 其他的自定义组件&#xff0c;build() 中…

详解API开发【电商平台API封装商品详情SKU数据接口开发】

1、电商API开发 RESTful API的设计 RESTful API是一种通过HTTP协议发送和接收数据的API设计风格。它基于一些简单的原则&#xff0c;如使用HTTP动词来操作资源、使用URI来标识资源、使用HTTP状态码来表示操作结果等等。在本文中&#xff0c;我们将探讨如何设计一个符合RESTfu…

Re54:读论文 How Context Affects Language Models‘ Factual Predictions

诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文名称&#xff1a;How Context Affects Language Models’ Factual Predictions ArXiv网址&#xff1a;https://arxiv.org/abs/2005.04611 2020年AKBC论文&#xff0c;作者来自脸书和UCL。 本文主要关注…

vscode Markdown 预览样式美化多方案推荐

优雅的使用 vscode写 Markdown&#xff0c;预览样式美化 1 介绍 我已经习惯使用 vscode 写 markdown。不是很喜欢他的 markdown 样式&#xff0c;尤其是代码块高亮的样式。当然用 vscode 大家基本上都会选择安装一个Markdown-preview-enhanced的插件&#xff0c;这个插件的确…

【C++】了解模板

这里是目录 前言函数模板函数模板的实例化类模板 前言 如果我们要交换两个数字&#xff0c;那么我们就需要写一个Swap函数来进行交换&#xff0c;那如果我们要交换char类型的数据呢&#xff1f;那又要写一份Swap的函数重载&#xff0c;参数的两个类型是char&#xff0c;那我们…

Python——— 函数大全

&#xff08;一&#xff09;初识函数 函数是可重用的程序代码块。 函数的作用&#xff0c;不仅可以实现代码的复用&#xff0c;更能实现代码的一致性。一致性指的是&#xff0c;只要修改函数的 代码&#xff0c;则所有调用该函数的地方都能得到体现。 在编写函数时&#xff0…

Linux常用命令----mkdir命令

文章目录 1. 基础概念2. 参数含义3. 常见用法4. 实例演示5. 结论 在Linux操作系统中&#xff0c;mkdir 命令是用来创建目录的基础命令。这个命令简单但极其强大&#xff0c;是每个Linux用户都应当熟悉的工具之一。以下是对mkdir命令的详细介绍&#xff0c;包括其参数含义、常见…

苹果cms搭建教程附带免费模板

准备工作: 一台服务器域名源码安装好NGINX+PHP7.0+MYSQL5.5 安装php7.0的扩展,fileinfo和 sg11,不安装网站会搭建失败。 两个扩展都全部安装好了之后 点击-服务-重载配置 这样我们的网站环境就配置完成啦 下载苹果cms 苹果cms程序github链接:选择mac10!下载即可 http…

Vue批量全局处理undefined和null转为““ 空字符串

我们在处理后台返回的信息&#xff0c;有的时候返回的是undefined或者null&#xff0c;这种字符串容易引起用户的误解&#xff0c;所以需要我们把这些字符串处理一下。 如果每个页面都单独处理&#xff0c;那么页面会很冗余&#xff0c;并且后期如果有修改容易遗漏&#xff0c…

DiSC沟通法,如何提高项目沟通效率?

DISC模型是一种用于理解和改善人际沟通的工具&#xff0c;它可以帮助团队成员更好地理解自己和他人的沟通方式&#xff0c;从而提高团队的沟通效率和协作效率。如果双方没有理解和适应对方的行为风格&#xff0c;往往容易造成误解甚至冲突&#xff0c;从而不利于团队间沟通协作…

vscode集成git

1、首先电脑要安装git 打开git官网地址&#xff1a;Git进行下载&#xff0c;如下图界面&#xff1a; 如图片中描述&#xff1a;一般进入官网后会识别电脑对应系统&#xff08;识别出了我的电脑是Windows系统 。如果未识别到电脑系统&#xff0c;可在左侧选择自己电脑对应的系统…

Influx集群解决方案(Influx Proxy篇)

InFluxDB 集群搭建 本次搭建使用influx proxy 介绍 github地址:https://github.com/chengshiwen/influx-proxy/ Influx Proxy 是一个基于高可用、一致性哈希的 InfluxDB 集群代理服务&#xff0c;实现了 InfluxDB 高可用集群的部署方案&#xff0c; 具有动态扩/缩容、故障恢复…

【MySQL】JDBC编程

&#x1f451;专栏内容&#xff1a;MySQL⛪个人主页&#xff1a;子夜的星的主页&#x1f495;座右铭&#xff1a;前路未远&#xff0c;步履不停 目录 一、JDBC工作原理二、JDBC 使用1、准备工作2、使用实例3、手动输入 一、JDBC工作原理 JDBC是Java语言中用于与数据库进行交互…