快速了解ChatGPT(大语言模型)

目录

GPT原理:文字接龙,输入一个字,后面会接最有可能出现的文字。

GPT4

学会提问:发挥语言模型的最大能力


参考李宏毅老师的课快速了解大语言模型做的笔记:

Lee老师幽默的开场:

 GPT:chat Generative Pre-trained Transformer

GPTS:专属的客制化的老师。

GPT原理:文字接龙,输入一个字,后面会接最有可能出现的文字。

回答问题的方式: 

 

 给每一个后面可能输出的符号一个概率值,输出概率最大的字符(token)。拆成token的方式也是比较有意思,会根据词性,词缀或者短语来生成token,那为什么这样子分呢?

因为英文单词是无法穷举的,他太多了,而token是一个可以进行穷举,类似的,中文方块字的token划分方式也是如此,可能将短语、不同词性的词划分成一个token。

        而且输出一个词会将输出的词又添加到输入词的后面,然后又生成后续的一个token,直到end的几率是最高的就结束。其实最后的输出并不是概率最大就输出概率大的token,而是进行一个掷色子的操作,所以就导致每次输出的结果可能是不同的,那为什么每次不选概率最大的进行输出呢?

有论文验证,为什么要掷骰子 ,这篇论文就讲了如果每次选几率最大的token可能输出会出现左边的情况,每次说的一样的话,而右边就是比较正常的,所以chatGPT才会出现骗人的场景。

        但是台湾省是没有玫瑰花节日的,但你告诉GPT是有的,GPT就会进行乱说,并生成一个假的网址。

        那它是如何有记忆功能的呢?就是上下文联通的功能?比如这样:

 是因为你问的问题,包括GPT输出的内容,GPT都会作为模型的输入,最后输出新的回答。

实际上模型所做的事情:

将最有可能输出的token的几率升高一点,将其他token的输出的几率降低一点,然后依次类推:

 Transformer里面的每个方块其实就是线性袋鼠的矩阵运算,需要大量可学习的参数,里面有上亿个参数。

 上图是第一代的GPT。

然后慢慢的:

不愧是李老师,PPT还是这么的幽默,模型参数量越来越大,

这是当时与其他模型相比时的正确率,当时准确率还不算特别高。然后OPENAI还不善罢甘休,他们说GPT3其实已经很聪明了,他为什么准确率不高是因为他不知道人类社会的规则,他只是学习了网络上的很多资料,碰到什么学什么,根本不知道他要做什么事情,而且回答是毫无逻辑的,

 SO,下一个阶段:

那就是让他继续学习。引入人类老师来指导GPT进行学习,那这种方法叫做监督式学习,而前面的方法叫做自监督学习,所以前面就是预训练,后面老师的指导就是大模型微调!(我终于懂了

 Fine-Tune!!!

这里有篇论文论证了监督式学习的重要性,https://arxiv.org/abs/2203.02155, 上图说明的问题是:(1)大的模型没有监督式学习老师的监督也可能不会超过小模型通过好的监督式学习的方式(小模型也有机会胜过大模型

(2)好的老师+大模型,效果会更好。

 

 

 还有增强式学习(强化学习,不提供正确的答案,而是提供反馈,什么样的答案是好的,什么样的答案是不好的,监督式学习人类就需要花费比较多的时间或者精力,而增强式学习我们每个人都可以做出贡献,我们在提问的同时就可以隐式的引导GPT回答出更加准确的答案,强化学习这边的知识我还没学过,下次有机会学学。

 强化学习一般放在网络的后端进行引导。

ChatGPT的强化学习步骤:

(1)模仿老师的偏好

(2)向模拟老师学习

监督式学习+强化学习也就是Alignment!!!(原来如此),就是对齐的过程。

GPT4

然后,GPT4技术报告,长达近百页,作者就有3页,主要就是炫耀GPT4有多麽多麽强。但是技术细节论文里面是没有写的

 亮点就是看得见了,可以传图片给GPT4,理解图片。

发挥语言模型的最大能力

1.把需求写清楚

2.提供资料给ChatGPT

3.提供范例:描述给他抽象的内容,比如晶晶体。

4.鼓励ChatGPT再想一想,让他解决问题时候,不要让他直接给答案,让他一步一步给出计算过程,那他答对的几率就会大大增加。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/207167.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在cmd下查看mysql表的结构信息

我提前已经在mysql数据库中创建了一个表: 在cmd下,登录mysql以后,使用命令describe 表名、或者explain 表名可以查看表结构信息。但在实践中,查看表结构,多用describe命令,而查看执行计划用explain。 例…

Yolov8实现瓶盖正反面检测

一、模型介绍 模型基于 yolov8n数据集采用SKU-110k,这数据集太大了十几个 G,所以只训练了 10 轮左右就拿来微调了 基于原木数据微调:训练 200 轮的效果 10 轮SKU-110k 20 轮原木 200 轮瓶盖正反面 微调模型下载地址https://wwxd.lanzouu.co…

西工大网络空间安全学院计算机系统基础实验零

首先,下载VMware17 Pro workstation。为什么要下载VMware17 Pro workstation呢?因为计算机系统基础实验有四个大部分:利用位运算实现诸如a*b,a/b,a*(2^4)等运算;C语言循环语句、switch语句等语句与汇编代码…

Android 12 及以上授权精确位置和模糊位置

请求位置信息权限 为了保护用户隐私,使用位置信息服务的应用必须请求位置权限。 请求位置权限时,请遵循与请求任何其他运行时权限相同的最佳做法。请求位置权限时的一个重要区别在于,系统中包含与位置相关的多项权限。具体请求哪项权限以及…

Linux uname命令教程:如何打印linux操作系统名称和硬件的基本信息(附实例教程和注意事项)

Linux uname命令介绍 uname命令是一个在Linux中常用的命令行工具,用于打印有关操作系统名称和系统硬件的基本信息。uname这个名字来源于"UNIX name"。它最常用于确定处理器架构,系统主机名和系统上运行的内核版本。 Linux uname命令适用的Li…

Python面向对象练习

Python面向对象练习 class Enty:blood100name""atackvalue100team0domain[1] #1,land 2 airdef setTeam(self,team0):self.teamteamdef atack(self,Enty):if self.teamEnty.team:print("不能向盟军开火")self.info()passelse :# print(self.domain)ss…

级联组件-双向绑定

页面1 级联选择器 <select-tree></select-tree>,这样要引入封装好的&#xff0c;并且记得注册 <el-row><el-col :span"12"><el-form-item label"部门" prop"departmentId"><!-- 单独封装--><!-- 在父组…

Docker容器中的OpenCV:轻松构建可移植的计算机视觉环境

前言 「作者主页」&#xff1a;雪碧有白泡泡 「个人网站」&#xff1a;雪碧的个人网站 构建可移植的计算机视觉环境 文章目录 前言引言简介&#xff1a;目的和重要性&#xff1a; 深入理解Docker和OpenCVDocker的基本概念和优势&#xff1a;OpenCV简介和应用领域&#xff1a;…

在龙蜥 anolis os 23 上 源码安装 PostgreSQL 16.1

在龙蜥 OS 23上&#xff0c;本来想使用二进制安装&#xff0c;结果发现没有针对龙蜥的列表&#xff1a; 于是想到了源码安装&#xff0c;下面我们列出了PG源码安装的步骤&#xff1a; 1.安装准备 1.1.创建操作系统组及用户 groupadd postgres useradd -g postgres -m postgr…

【Linux】快速上手自动化构建工具make/makefile

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.什么是make / makefile 2…

虹科干货 | 适用于基于FPGA的网络设备的IEEE 1588透明时钟架构

导读&#xff1a;在基于FPGA的网络设备中&#xff0c;精确的时间同步至关重要。IEEE 1588标准定义的精确时间协议&#xff08;PTP&#xff09;为网络中的设备提供了纳秒级的时间同步。本文将介绍虹科提供的适用于基于FPGA的网络设备的IEEE 1588透明时钟&#xff08;TC&#xff…

Android的启动模式

Android的四种启动模式&#xff1a;standard、singleTop、singleTask和singleInstance。 1.standard Android默认的启动模式是standard&#xff0c;每启动一个Activity&#xff0c;它都会在返回栈中入栈&#xff0c;并处于栈顶&#xff0c;不管这个返回栈是否存在这个activit…

如何查看电脑内存?Windows 和 Mac 方法不同

Windows 系统查看内存方法 在 Windows 操作系统中我们查看电脑内存在哪里查呢&#xff1f;下面总结的 3 种查看电脑内存的方法都可以使用&#xff1a;使用任务管理器&#xff1a;任务管理器是 Windows 中一个强大的工具&#xff0c;可用于监视和管理计算机的性能和资源使用。使…

SpringBoot参数校验@Validated和@Valid的使用

1、Validated和Valid区别 Validated&#xff1a;可以用在类、方法和方法参数上。但是不能用在成员属性&#xff08;字段&#xff09;上Valid&#xff1a;可以用在方法、构造函数、方法参数和成员属性&#xff08;字段&#xff09;上 2、引入依赖 Spring Boot 2.3 1 之前&…

2023年亚太杯数学建模A题水果采摘机器人的图像识别功能(免费思路)

中国是世界上最大的苹果生产国&#xff0c;年产量约为 3500 万吨。同时&#xff0c;中国也是世界上最大的苹果出口国&#xff0c;世界上每两个苹果中就有一个出口到国。世界上每两个苹果中就有一个来自中国&#xff0c;中国出口的苹果占全球出口量的六分之一以上。来自中国。中…

【机器学习】线性模型之逻辑回归

文章目录 逻辑回归Sigmoid 函数概率输出结果预测值与真实标签之间的并不匹配交叉熵逻辑回归模型 梯度下降逻辑回归模型求解编程求解sklearn 实现&#xff0c;并查看拟合指标 逻辑回归 逻辑回归是一种广义线性模型&#xff0c;形式上引入了 S i g m o i d Sigmoid Sigmoid 函数…

(2)(2.2) Lightware SF45/B(350度)

文章目录 前言 1 安装SF45/B 2 连接自动驾驶仪 3 通过地面站进行配置 4 参数说明 前言 Lightware SF45/B 激光雷达(Lightware SF45/B lidar)是一种小型扫描激光雷达&#xff08;重约 50g&#xff09;&#xff0c;扫描度可达 350 度&#xff0c;扫描范围 50m。 1 安装SF45…

python 中文件相对路径 和绝对路径

什么是绝对路径 绝对路径&#xff1a;就是从盘符(c盘、d盘)开始一直到文件所在的具体位置。 例如&#xff1a;xxx.txt 文件的绝对路径为&#xff1a; “C:\Users\xiaoyuzhou\Desktop\file\xxx.txt”相对路径 “相对路径”就是针对“当前文件夹”这一参考对象&#xff0c;来描述…

强化学习-DQN

网上看了很多&#xff0c;但是还是觉得这篇文章讲得最好&#xff1a; 可视化强化学习解释 - Deep Q Networks&#xff0c;循序渐进 |Ketan Doshi 博客 (ketanhdoshi.github.io)

深度学习(三):pytorch搭建卷积神经网络

1.常用函数介绍 0 设备准备 device torch.device("cuda:0" if torch.cuda.is_available() else "cpu")这行代码是用来选择设备的&#xff0c;根据是否有可用的 CUDA 设备来选择使用 GPU 还是 CPU 进行计算。 更详细的解释如下&#xff1a; torch.cuda.…