Elasticsearch:对时间序列数据流进行降采样(downsampling)

降采样提供了一种通过以降低的粒度存储时间序列数据来减少时间序列数据占用的方法。

指标(metrics)解决方案收集大量随时间增长的时间序列数据。 随着数据老化,它与系统当前状态的相关性越来越小。 降采样过程将固定时间间隔内的文档汇总为单个摘要文档。 每个摘要文档都包含原始数据的统计表示:每个指标的最小值(min)最大值 (max)总和 (sum)值计数 (value_count) 和平均值 (average)。 数据流时间序列维度存储不变。

实际上,降采样可以让你用数据分辨率和精度来换取存储大小。 你可以将其包含在索引生命周期管理 (ILM) 策略中,以自动管理指标数据的数量和相关成本。

它是如何工作的?

时间序列是特定实体随时间推移的一系列观察结果。 观察到的样本可以表示为连续函数,其中时间序列维度保持不变,时间序列指标随时间变化。

在 Elasticsearch 索引中,会为每个时间戳创建一个文档,其中包含不可变的时间序列维度以及指标名称和变化的指标值。 对于单个时间戳,可以存储多个时间序列维度和指标。

对于最新的相关数据,指标系列通常具有较低的采样时间间隔,因此它针对需要高数据分辨率的查询进行了优化。

图 2. 原始指标系列

降采样通过用更高采样间隔的数据流和该数据的统计表示替换原始时间序列来处理较旧的、访问频率较低的数据。 在原始指标样本可能已采集的情况下,例如每十秒采集一次,随着数据老化,你可以选择将样本粒度减少到每小时或每天。 你可以选择将冷归档数据的粒度减少到每月或更小。

图 3. 降采样指标系列

对时间序列数据运行降采样

要对时间序列索引进行降采样,请使用 Downsample API 并将 fixed_interval 设置为你想要的粒度级别:

POST /my-time-series-index/_downsample/my-downsampled-time-series-index
{"fixed_interval": "1d"
}

要将时间序列数据降采样作为 ILM 的一部分,请在 ILM 策略中包含降采样操作,并将 fixed_interval 设置为你想要的粒度级别:

PUT _ilm/policy/my_policy
{"policy": {"phases": {"warm": {"actions": {"downsample" : {"fixed_interval": "1h"}}}}}
}

查询降采样索引

你可以使用 _search 和 _async_search 端点来查询降采样索引。 可以在单个请求中查询多个原始数据和降采样索引,并且单个请求可以包括不同粒度(不同桶时间跨度)的降采样索引。 也就是说,你可以查询包含具有多个降采样间隔(例如15m、1h、1d)的降采样索引的数据流。

基于时间的直方图聚合的结果采用统一的桶大小,并且每个降采样索引返回忽略降采样时间间隔的数据。 例如,如果你对已按每小时分辨率 ( "fixed_interval": "1h") 降采样的降采样索引运行带有 "fixed_interval": "1m" 的 date_histogram 聚合,则查询将返回一个存储桶,其中包含位于 第 0 分钟,然后是 59 个空桶,然后是下一小时内再次有数据的桶。

关于降采样查询的注意事项

查询降采样索引有几点需要注意:

  • 当你在 Kibana 中并通过 Elastic 解决方案运行查询时,会返回正常响应,而不会通知某些查询索引已被降采样。
  • 对于日期直方图聚合,仅支持 fixed_intervals(而不支持日历感知间隔)。
  • 仅支持协调世界时 (UTC) 日期时间。

限制和局限

以下限制和局限适用于降采样:

  • 仅支持时间序列数据流中的索引。
  • 仅根据时间维度对数据进行降采样。 所有其他维度都将复制到新索引而不进行任何修改。
  • 在数据流内,降采样索引替换原始索引,并且原始索引被删除。 给定时间段内只能存在一个索引。
  • 源索引必须处于只读模式才能成功进行降采样过程。 有关详细信息,请查看如下的手动运行降采样示例。
  • 支持对同一时段的数据进行多次降采样(降采样索引的降采样)。 降采样间隔必须是降采样索引间隔的倍数。
  • 降采样作为 ILM 操作提供。 请参阅降采样。
  • 新的降采样索引是在原始索引的数据层上创建的,并继承其设置(例如,分片和副本的数量)。
  • 支持 gauge 和 counter 指标类型。
  • 降采样配置是从时间序列数据流索引映射中提取的。 唯一需要的额外设置是降采样固定间隔。

手动运行降采样

对时间序列数据流 (TSDS) 进行降采样的推荐方法是通过索引生命周期管理 (ILM)。我们将在下面进行详述。 但是,如果你不使用 ILM,则可以手动对 TSDS 进行降采样。 本指南向你展示如何使用典型的 Kubernetes 集群监控数据。

前提条件

  • 请参阅 TSDS 先决条件。
    • 集群权限:manage_ilm 和 manage_index_templates。
    • 索引权限:你创建或转换的任何 TSDS 的 create_doc 和 create_index。 要滚动 TSDS,你必须具有 manage 权限。
  • 不可能直接对数据流进行降采样,也不可能一次对多个索引进行降采样。 只能对一个时间序列索引(TSDS 后备索引)进行降采样。
  • 为了对索引进行降采样,它需要是只读的。 对于 TSDS 写入索引,这意味着需要先滚动并使其变为只读。
  • 降采样使用 UTC 时间戳。
  • 降采样需要时间序列索引中至少存在一个指标字段。

创建时间序列数据流

首先,你将创建 TSDS。 为了简单起见,在时间序列映射中,所有 time_series_metric 参数都设置为 gauge 类型,但也可以使用其他值,例如 counter 和 histogram。 time_series_metric 值确定降采样期间使用的统计表示的类型。

索引模板包含一组静态时间序列维度:主机 (host)、命名空间 (namespace)、节点 (node) 和 Pod。 时间序列维度不会因降采样过程而改变。

PUT _index_template/my-data-stream-template
{"index_patterns": ["my-data-stream*"],"data_stream": {},"template": {"settings": {"index": {"mode": "time_series","routing_path": ["kubernetes.namespace","kubernetes.host","kubernetes.node","kubernetes.pod"],"number_of_replicas": 0,"number_of_shards": 2}},"mappings": {"properties": {"@timestamp": {"type": "date"},"kubernetes": {"properties": {"container": {"properties": {"cpu": {"properties": {"usage": {"properties": {"core": {"properties": {"ns": {"type": "long"}}},"limit": {"properties": {"pct": {"type": "float"}}},"nanocores": {"type": "long","time_series_metric": "gauge"},"node": {"properties": {"pct": {"type": "float"}}}}}}},"memory": {"properties": {"available": {"properties": {"bytes": {"type": "long","time_series_metric": "gauge"}}},"majorpagefaults": {"type": "long"},"pagefaults": {"type": "long","time_series_metric": "gauge"},"rss": {"properties": {"bytes": {"type": "long","time_series_metric": "gauge"}}},"usage": {"properties": {"bytes": {"type": "long","time_series_metric": "gauge"},"limit": {"properties": {"pct": {"type": "float"}}},"node": {"properties": {"pct": {"type": "float"}}}}},"workingset": {"properties": {"bytes": {"type": "long","time_series_metric": "gauge"}}}}},"name": {"type": "keyword"},"start_time": {"type": "date"}}},"host": {"type": "keyword","time_series_dimension": true},"namespace": {"type": "keyword","time_series_dimension": true},"node": {"type": "keyword","time_series_dimension": true},"pod": {"type": "keyword","time_series_dimension": true}}}}}}
}

摄取时间序列数据

由于时间序列数据流被设计为仅接受最近的数据,因此在本例中,你将使用摄取管道在数据被索引时对数据进行时移。 因此,索引数据将具有最近 15 分钟的 @timestamp。

使用此请求创建管道:

PUT _ingest/pipeline/my-timestamp-pipeline
{"description": "Shifts the @timestamp to the last 15 minutes","processors": [{"set": {"field": "ingest_time","value": "{{_ingest.timestamp}}"}},{"script": {"lang": "painless","source": """def delta = ChronoUnit.SECONDS.between(ZonedDateTime.parse("2022-06-21T15:49:00Z"),ZonedDateTime.parse(ctx["ingest_time"]));ctx["@timestamp"] = ZonedDateTime.parse(ctx["@timestamp"]).plus(delta,ChronoUnit.SECONDS).toString();"""}}]
}

接下来,使用批量 API 请求自动创建 TSDS 并为一组 10 个文档编制索引:

PUT /my-data-stream/_bulk?refresh&pipeline=my-timestamp-pipeline
{"create": {}}
{"@timestamp":"2022-06-21T15:49:00Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":91153,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":463314616},"usage":{"bytes":307007078,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":585236},"rss":{"bytes":102728},"pagefaults":120901,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:45:50Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":124501,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":982546514},"usage":{"bytes":360035574,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1339884},"rss":{"bytes":381174},"pagefaults":178473,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:44:50Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":38907,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":862723768},"usage":{"bytes":379572388,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":431227},"rss":{"bytes":386580},"pagefaults":233166,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:44:40Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":86706,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":567160996},"usage":{"bytes":103266017,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1724908},"rss":{"bytes":105431},"pagefaults":233166,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:44:00Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":150069,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":639054643},"usage":{"bytes":265142477,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1786511},"rss":{"bytes":189235},"pagefaults":138172,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:42:40Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":82260,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":854735585},"usage":{"bytes":309798052,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":924058},"rss":{"bytes":110838},"pagefaults":259073,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:42:10Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":153404,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":279586406},"usage":{"bytes":214904955,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1047265},"rss":{"bytes":91914},"pagefaults":302252,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:40:20Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":125613,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":822782853},"usage":{"bytes":100475044,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":2109932},"rss":{"bytes":278446},"pagefaults":74843,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:40:10Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":100046,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":567160996},"usage":{"bytes":362826547,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1986724},"rss":{"bytes":402801},"pagefaults":296495,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
{"create": {}}
{"@timestamp":"2022-06-21T15:38:30Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":40018,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":1062428344},"usage":{"bytes":265142477,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":2294743},"rss":{"bytes":340623},"pagefaults":224530,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}

你可以使用搜索 API 检查文档是否已正确索引:

GET /my-data-stream/_search

对数据运行以下聚合以计算一些有趣的统计数据:

GET /my-data-stream/_search
{"size": 0,"aggs": {"tsid": {"terms": {"field": "_tsid"},"aggs": {"over_time": {"date_histogram": {"field": "@timestamp","fixed_interval": "1d"},"aggs": {"min": {"min": {"field": "kubernetes.container.memory.usage.bytes"}},"max": {"max": {"field": "kubernetes.container.memory.usage.bytes"}},"avg": {"avg": {"field": "kubernetes.container.memory.usage.bytes"}}}}}}}
}

对 TSDS 进行降采样

TSDS 无法直接降采样。 你需要对其后备索引进行降采样。 你可以通过运行以下命令查看数据流的后备索引:

GET /_data_stream/my-data-stream

在对支持索引进行降采样之前,需要滚动 TSDS,并且需要将旧索引设为只读。

使用 rollver API 滚动 TSDS:

POST /my-data-stream/_rollover/

从响应中复制 old_index 的名称。 在以下步骤中,将索引名称替换为你的 old_index 的名称。

旧索引需要设置为只读模式。 运行以下请求:

PUT /.ds-my-data-stream-2023.11.30-000001/_block/write

接下来,使用 downsample API 对索引进行降采样,将时间序列间隔设置为一小时:

POST /.ds-my-data-stream-2023.11.30-000001/_downsample/.ds-my-data-stream-2023.11.30-000001-downsample
{"fixed_interval": "1h"
}

现在你可以修改数据流,并将原始索引替换为降采样后的索引:

POST _data_stream/_modify
{"actions": [{"remove_backing_index": {"data_stream": "my-data-stream","index": ".ds-my-data-stream-2023.11.30-000001"}},{"add_backing_index": {"data_stream": "my-data-stream","index": ".ds-my-data-stream-2023.11.30-000001-downsample"}}]
}

你现在可以删除旧的后备索引。 但请注意,这会删除原始数据。 如果将来可能需要原始数据,请不要删除索引。

查看结果

重新运行之前的搜索查询(请注意,在查询降采样索引时,需要注意一些细微差别):

GET /my-data-stream/_search

具有新的降采样后备索引的 TSDS 仅包含一份文档。 对于计数器,该文档仅具有最后的值。 对于 gauge,字段类型现在为 aggregate_metric_double。 你会看到基于原始采样指标的 min、max、sum 和 value_count 统计信息:

{"took": 3,"timed_out": false,"_shards": {"total": 4,"successful": 4,"skipped": 0,"failed": 0},"hits": {"total": {"value": 1,"relation": "eq"},"max_score": 1,"hits": [{"_index": ".ds-my-data-stream-2023.11.30-000001-downsample","_id": "0eL0wC_4-45SnTNFAAABjB5iLgA","_score": 1,"_source": {"@timestamp": "2023-11-30T04:00:00.000Z","_doc_count": 10,"ingest_time": "2023-11-30T04:24:20.124Z","kubernetes": {"container": {"cpu": {"usage": {"core": {"ns": 12828317850},"limit": {"pct": 0.0000277905},"nanocores": {"min": 38907,"max": 153404,"sum": 992677,"value_count": 10},"node": {"pct": 0.0000277905}}},"memory": {"available": {"bytes": {"min": 279586406,"max": 1062428344,"sum": 7101494721,"value_count": 10}},"majorpagefaults": 0,"pagefaults": {"min": 74843,"max": 302252,"sum": 2061071,"value_count": 10},"rss": {"bytes": {"min": 91914,"max": 402801,"sum": 2389770,"value_count": 10}},"usage": {"bytes": {"min": 100475044,"max": 379572388,"sum": 2668170609,"value_count": 10},"limit": {"pct": 0.00009923134},"node": {"pct": 0.017700378}},"workingset": {"bytes": {"min": 431227,"max": 2294743,"sum": 14230488,"value_count": 10}}},"name": "container-name-44","start_time": "2021-03-30T07:59:06.000Z"},"host": "gke-apps-0","namespace": "namespace26","node": "gke-apps-0-0","pod": "gke-apps-0-0-0"}}}]}
}

重新运行之前的聚合。 即使聚合在仅包含 1 个文档的降采样 TSDS 上运行,它也会返回与原始 TSDS 上的早期聚合相同的结果。

GET /my-data-stream/_search
{"size": 0,"aggs": {"tsid": {"terms": {"field": "_tsid"},"aggs": {"over_time": {"date_histogram": {"field": "@timestamp","fixed_interval": "1d"},"aggs": {"min": {"min": {"field": "kubernetes.container.memory.usage.bytes"}},"max": {"max": {"field": "kubernetes.container.memory.usage.bytes"}},"avg": {"avg": {"field": "kubernetes.container.memory.usage.bytes"}}}}}}}
}

此示例演示了降采样如何在你选择的任何时间范围内显着减少为时间序列数据存储的文档数量。 随着时间序列数据的老化和数据分辨率变得不那么重要,还可以对已经降采样的数据执行降采样,以进一步减少存储和相关成本。

对 TSDS 进行降采样的推荐方法是使用 ILM。 要了解更多信息,请尝试使用 ILM 运行降采样示例。这个将在我们的下面一篇文章中进行介绍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/209279.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VC++调试QT源码

环境:vs2017 qt 5.14.2 1:首先我们需要选择我们的源码路径 右键解决方案-》属性-》通用属性-》调试源文件-》在窗口内添加QT下载时的源码**.src文件夹**,这里最好把源码 D:\software\QT\path\5.14.2\Src 源文件里面的Src文件做一个备份出来…

<蓝桥杯软件赛>零基础备赛20周--第8周第2讲--排序的应用

报名明年4月蓝桥杯软件赛的同学们,如果你是大一零基础,目前懵懂中,不知该怎么办,可以看看本博客系列:备赛20周合集 20周的完整安排请点击:20周计划 每周发1个博客,共20周(读者可以按…

MFC 绘制单一颜色圆形、渐变颜色边框圆形、渐变填充圆形以及绘制三角函数正弦函数曲线.

MFC 绘制三种不同圆形以及绘制正弦函数曲线 本文使用visual Studio MFC 平台实现绘制单一颜色圆形、渐变颜色边框圆形、渐变填充圆形以及绘制三角函数正弦函数曲线. 关于基础工程的创建请参考 01-Visual Studio 使用MFC 单文档工程绘制单一颜色直线和绘制渐变颜色的直线 02-vis…

百度收录批量查询工具,免费SEO优化排名工具

拥有一个在搜索引擎中得到良好收录的网站对于个人和企业都至关重要。而百度,作为中国最大的搜索引擎,其收录情况直接影响着网站的曝光度和流量。 百度搜索引擎是中文用户获取信息的重要途径之一。而在这个竞争激烈的网络环境中,了解自己网站…

重启路由器可以解决N多问题?

为什么重启始终是路由器问题的首要解决方案? 在日常的工作学习工作中,不起眼的路由器是一种相对简单的设备,但这仍然是我们谈论的计算机。 这种廉价的塑料外壳装有 CPU、随机存取存储器 (RAM)、只读存储器 (ROM) 和许多其他组件。 该硬件运行预装的软件(或固件)来管理连接…

vue之mixin混入

vue之mixin混入 mixin是什么? 官方的解释: 混入 (mixin) 提供了一种非常灵活的方式,来分发 Vue 组件中的可复用功能。一个混入对象可以包含任意组件选项。当组件使用混入对象时,所有混入对象的选项将被“混合”进入该组件本身的…

严蔚敏数据结构题集 p18(2.25——2.30)(c语言代码实现)

目录 2.25假设以两个元素依值递增有序排列的线性表A和B分别表示两个集合(即同一表中的元素值各不相同),现要求另辟空间构成一个线性表C,其元素为A和B中元素的交集,且表C中的元素也依值递增有序排列。试对顺序表编写求C的算法。 2.26要求同2.25题。是对单链表编写求C的算法 2.…

[架构之路-256]:目标系统 - 设计方法 - 软件工程 - 软件设计 - 架构设计 - 软件系统不同层次的复用与软件系统向越来越复杂的方向聚合

目录 前言: 一、CPU寄存器级的复用:CPU寄存器 二、指令级复用:二进制指令 三、过程级复用:汇编语言 四、函数级复用:C语言 五、对象级复用:C, Java, Python 六、组件级复用 七、服务级复用 八、微…

Swift下如何使用#if条件编译

一、OC使用条件编译 OC中可以使用宏定义,再使用条件编译 #define USER_CUSTOM使用 #if USER_CUSTOM //其他代码 #endif二、Swift使用条件编译 Swift 不像ObjectC一样,通过定义一个变量,然后使用**#if #endif** 方法。swift需要设置一下才能…

2 文本分类入门:TextCNN

论文链接:https://arxiv.org/pdf/1408.5882.pdf TextCNN 是一种用于文本分类的卷积神经网络模型。它在卷积神经网络的基础上进行了一些修改,以适应文本数据的特点。 TextCNN 的主要思想是使用一维卷积层来提取文本中的局部特征,并通过池化操…

搭建Appium工具环境

1、安装Java Development Kit(JDK) 前往Oracle官网下载JDK。 在https://www.oracle.com/java/technologies/javase-jdk11-downloads.html 找到最新版本的JDK。根据操作系统选择适合的版本,并根据指示下载安装程序。 安装JDK。运行下载的安…

Unittest单元测试之unittest用例执行顺序

unittest用例执行顺序 当在一个测试类或多个测试模块下,用例数量较多时,unittest在执行用例 (test_xxx)时,并不是按从上到下的顺序执行,有特定的顺序。 unittest框架默认根据ACSII码的顺序加载测试用例&a…

从薛定谔的猫——量子理论基础

在介绍量子理论基础之前,先介绍一下薛定谔的猫的故事,这个故事可能大多数朋友并不陌生,下面首先回顾一下: 薛定谔的猫是一个在量子力学中用来说明量子叠加态和测量结果的思维实验。这个思维实验最早由物理学家Erwin Schrdinger在1…

【技术干货】宇视IPC音频问题解决步骤

近期技术人员从宇视官网下载sdk进行二次开发时,在启动实时直播,并通过回调函数拿到流数据,发现没有音频流数据。 通过下面的数据发现,codeType此字段一直是28,代表的是H.264数据,但未没发现有音频的数据包…

【Altera】Cyclone10 FPGA DDR3使用

目录 开发板 硬件 框图 原理图 测试工具 DDR IP核配置 调试及遇到的问题 读写仲裁时序 问题1.拉高read后,wait一直没反应 问题2.DDR校正不过的一个可能性 延伸学习 开发板 Intel官方提供c10的开发套件:Intel Cyclone 10 GX FPGA Development …

替代升级虚拟化 | ZStack Cloud云平台助力中节能镇江公司核心业务上云

数字经济正加速推动各行各业的高质量升级发展,云计算是数字经济的核心底层基础设施。作为云基础软件企业,云轴科技ZStack 坚持自主创新,自研架构,产品矩阵可全面覆盖数据中心云基础设施,针对虚拟化资源实现纳管、替代和…

Selenium——isDisplayed()、isEnabled()、isSelected()

判断页面是否存在某元素 Selenium没有直接提供判断是否存在的方法,可以使用findElements返回的数量判断;或者判断findElement是否抛出异常 webDriver.findElements(By.xpath("(//div[classel-button-group]//button)[1]")).size()isDisplaye…

mysql-日期和时间函数

1.获取日期、时间 SELECT CURDATE(),CURTIME(),NOW(),UTC_DATE(),UTC_TIME() FROM dual; 2.日期与时间戳的转换 SELECT UNIX_TIMESTAMP(),UNIX_TIMESTAMP(NOW()),FROM_UNIXTIME(UNIX_TIMESTAMP()) FROM dual; 3.获取月份、星期、星期数、天数等函数 SELECT YEAR(CURDATE()),MON…

【带头学C++】----- 九、类和对象 ---- 9.1 类和对象的基本概念----(9.1.4---9.1.6)

目录 9.1.4 设计立方体类 ​编辑 9.1.5 成员函数在类的外部实现 9.1.6 类在其他源文件的实现步骤(实现类在不同文件的实现,后续引出构造函数) 注意:类定义在同文件testclass.h中,而testclass.cpp是用来实现(声明&…

项目实战一-性能测试筑基

这里写目录标题 一、为什么程序会出现性能问题、性能问题是怎么出现的?二、功能测试和性能测试的区别是什么?三、核心性能指标1、用户角度核心a、响应时间:b、并发量 2、成本角度3、运维角度面试题、并发量和吞吐量得区别?a、吞吐…