基于YOLOv8深度学习的安全帽目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:安全帽检测在日常生活和工作中具有重要的意义。佩戴安全帽是预防头部受伤的有效手段,尤其在建筑工地、工厂、矿山等高风险环境中,佩戴安全帽对于保障人身安全至关重要。本文基于YOLOv8深度学习框架,通过7581张图片,训练了一个进行人员是否佩戴安全帽的目标检测模型,准确率高达0.95。并基于此模型开发了一款带UI界面的安全帽检测系统,可用于实时检测人员是否有佩戴安全帽,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
    • (4)保存图片与视频检测结果
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3. 训练结果评估
    • 4. 检测结果识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

安全帽检测在日常生活和工作中具有重要的意义。佩戴安全帽是预防头部受伤的有效手段,尤其在建筑工地、工厂、矿山等高风险环境中,佩戴安全帽对于保障人身安全至关重要。然而,在实际生活中,我们经常会遇到一些人员未佩戴安全帽的情况,这不仅增加了他们自身的安全风险,还可能对周围人造成潜在的安全隐患。

安全帽检测的应用场景非常广泛,主要包括以下几个方面:
建筑工地:在建筑工地上,工人需要佩戴安全帽以保护头部免受坠落物、碰撞等意外伤害。通过使用安全帽检测软件,可以实时监控工人是否佩戴安全帽,提高工地安全管理水平。
工厂与矿山:在工厂和矿山等高风险环境中,员工同样需要佩戴安全帽。安全帽检测软件可以帮助企业管理人员及时发现未佩戴安全帽的员工,及时进行提醒和教育,降低事故发生的风险。
交通执法:在交通执法过程中,执法人员可以使用安全帽检测软件对驾驶员是否佩戴安全帽进行快速、准确的判断,提高执法效率。
教育培训:在安全生产教育培训中,安全帽检测软件可以作为一种教学辅助工具,帮助学员更好地理解佩戴安全帽的重要性和方法。
总之,安全帽检测在保障人们生命财产安全方面发挥着重要作用,通过使用相关软件,我们可以更加高效地管理和维护各类场所的安全秩序。

博主通过搜集人员是否佩戴安全帽的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的人员安全帽检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件基本界面如下图所示:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行人员佩戴安全帽未戴安全帽两种状态的目标检测;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述

在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于安全帽的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含7581张图片,其中训练集包含6064张图片验证集包含1517张图片,部分图像及标注如下图所示。
在这里插入图片描述
在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入helmetData目录下。
在这里插入图片描述
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\HelmetDetection\datasets\helmetData\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\HelmetDetection\datasets\helmetData\val  # val images (relative to 'path') 128 images
test:  # val images (optional)# number of classes
nc: 2# Classes
names: ['Helmet', 'NoHelmet']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/helmetData/data.yaml', epochs=250, batch=4)  # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述
我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5已经达到了0.94以上,平均值为0.946,结果还是很不错的。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/000030.jpg"# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款安全帽检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的安全帽目标检测系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/209967.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DataGrip 2023.2.3(IDE数据库开发)

DataGrip是一款数据库集成开发环境(IDE),用于数据库管理和开发。 DataGrip提供了许多强大的功能,如SQL语句编辑、数据库连接管理、数据导入和导出、数据库比较和同步等等。它支持多种数据库,如MySQL、PostgreSQL、Ora…

【开源存储】minio对象存储部署实践

文章目录 一、前言1、介绍说明2、部署方式3、冗余模式4、约束限制4.1、规格参数4.2、API支持a、minio不支持的Amazon S3 Bucket APIb、minio不支持的Amazon S3 Object API 二、部署说明1、软件安装2、minio单机部署3、minio分布式部署3.1、前置条件3.2、开始运行3.3、操作说明 …

数据结构-03-栈

1-栈的结构和特点 先进后出,后进先出 是栈的特点; 从图中,我们看到A入栈先放入底部,然后依次B和C;出栈的顺序依次是C-B-A;这种结构只能在一端操作。所以当某个数据集合只涉及在一端插入和删除数据&#xf…

模型层——单表操作

单表操作 一 ORM简介 查询数据层次图解:如果操作mysql,ORM是在pymysq之上又进行了一层封装 MVC或者MTV框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库…

线性规划问题

线性规划问题: 将约束条件及目标函数都是决策变量的线性函数的规划问题称为线性规划问题 一般线性规划问题的描述: 为了解决这类问题,首先需要确定问题的决策变量:然后确定问题的目标,并将目标表示为决策变量的线性函数;最后找出问…

Spring Security 6.x 系列(8)—— 源码分析之配置器SecurityConfigurer接口及其分支实现

一、前言 本章主要内容是关于配置器的接口架构设计,任意找一个配置器一直往上找,就会找到配置器的顶级接口:SecurityConfigurer。 查看SecurityConfigurer接口的实现类情况: 在 AbstractHttpConfigurer 抽象类的下面可以看到所有…

利用异或、取反、自增bypass_webshell_waf

目录 引言 利用异或 介绍 eval与assert 蚁剑连接 进阶题目 利用取反 利用自增 引言 有这样一个waf用于防御我们上传的文件: function fun($var): bool{$blacklist ["\$_", "eval","copy" ,"assert","usort…

pip的基本命令和使用

pip 简介 pip是Python官方的包管理器,可以方便地安装、升级和卸载Python包。 pip 常用命令 显示版本和路径 pip --version获取帮助 pip --help升级pip和升级包 pip install --upgrade pip # Linux/macOS pip install -U pip # windowspip install…

每日一练【盛最多水的容器】

一、题目描述 11. 盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&…

Qt Creator使用Heob检测内存泄漏

开发环境:win10 qt5.12.0 编译环境:MinGW 使用内存泄漏排查工具heob步骤如下: 第一步:下载heob.exe--注:我本机仅有heob.exe还不行,提示如下 所以需要下载heob和Dwarfstack,然后把他们放到同级目录下,我已经下载并且…

Mybatis中的设计模式

Mybatis中的设计模式 Mybatis中使用了大量的设计模式。 以下列举一些看源码时,觉得还不错的用法: 创建型模式 工厂方法模式 DataSourceFactory 通过不同的子类工厂,实例化不同的DataSource TransactionFactory 通过不同的工厂&#xff…

js moment时间范围拿到中间间隔时间

2023.11.27今天我学习了如何对只返回的开始时间和结束时间做处理,比如后端返回了: [time:{start:202301,end:202311}] 我们需要把中间的间隔渲染出来。 [202301,202302,202303,202304,202305,202306,202307,202308,202309,202310,202311] 利用moment…

01 高等数学.武忠祥.0基础

第一章 函数与极限 01映射与函数 02 函数概念 对应法则 定义域 常见函数 函数的几种特性 周期函数不一定有最小周期。 涉及额外与复习 存在与任意的关系

Star 10.4k!推荐一款国产跨平台、轻量级的文本编辑器,内置代码对比功能

notepad 相信大家从学习这一行就开始用了,它是开发者/互联网行业的上班族使用率最高的一款轻量级文本编辑器。但是它只能在Windows上进行使用,而且正常来说是收费的(虽然用的是pj的)。 对于想在MacOS、Linux上想使用,…

关于使用百度开发者平台处理语音朗读问题排查

错误信息:"convert_offline": false, "err_detail": "16: Open api characters limit reach 需要领取完 识别和合成都要有

Clean 架构下的现代 Android 架构指南

Clean 架构下的现代 Android 架构指南 Clean 架构是 Uncle Bob 提出的一种软件架构,Bob 大叔同时也是 SOLID 原则的命名者。 Clean 架构图如下: 这张图描述的是整个软件系统的架构,而不是单体软件,其中至少包括服务端以及客户端…

【Java】类和对象之超级详细的总结!!!

文章目录 前言1. 什么是面向对象?1.2面向过程和面向对象 2.类的定义和使用2.1什么是类?2.2类的定义格式2.3类的实例化2.3.1什么是实例化2.3.2类和对象的说明 3.this引用3.1为什么会有this3.2this的含义与性质3.3this的特性 4.构造方法4.1构造方法的概念4…

ElasticSearch学习笔记(一)

计算机软件的学习,最重要的是举一反三,只要大胆尝试,认真验证自己的想法就能收到事办功倍的效果。在开始之前可以看看别人的教程做个快速的入门,然后去官方网站看看官方的教程,有中文教程固然是好,没有中文…

dcat admin日志扩展 dcat-log-viewer 遇到的问题记录

扩展地址: https://github.com/duolabmeng6/dcat-log-viewer 问题描述: 使用很简单,直接安装扩展包,开启扩展就可以了,会自动生成菜单。 之前在别的系统用过,没问题,今天在一个新的系统用的时…

【网络奇缘】- 计算机网络|分层结构|深入探索TCP/IP模型|5层参考模型

​ 🌈个人主页: Aileen_0v0🔥系列专栏: 一见倾心,再见倾城 --- 计算机网络~💫个人格言:"没有罗马,那就自己创造罗马~" 目录 OSI参考模型与TCP/IP参考模型相同点 OSI参考模型与TCP/IP参考模型不同点 面向连接三阶段&#xff08…