深度学习TensorFlow2基础知识学习前半部分

目录

测试TensorFlow是否支持GPU:

自动求导:

 数据预处理 之 统一数组维度

 定义变量和常量

 训练模型的时候设备变量的设置

生成随机数据

交叉熵损失CE和均方误差函数MSE 

全连接Dense层

维度变换reshape

增加或减小维度

数组合并

广播机制:

简单范数运算

 矩阵转置


框架本身只是用来编写的工具,每个框架包括Pytorch,tensorflow、mxnet、paddle、mandspore等等框架编程语言上其实差别是大同小异的,不同的点是他们在编译方式、运行方式或者计算速度上,我也浅浅的学习一下这个框架以便于看github上的代码可以轻松些。

我的环境:

google colab的T4 GPU

首先是

测试TensorFlow是否支持GPU:

打开tf的config包,里面有个list_pysical_devices("GPU")

import os
import tensorflow as tfos.environ['TF_CPP_Min_LOG_LEVEL']='3'
os.system("clear")
print("GPU列表:",tf.config.list_logical_devices("GPU"))

运行结果:

GPU列表: [LogicalDevice(name='/device:GPU:0', device_type='GPU')]

检测运行时间:

def run():n=1000#CPU计算矩阵with tf.device('/cpu:0'):cpu_a = tf.random.normal([n,n])cpu_b = tf.random.normal([n,n])print(cpu_a.device,cpu_b.device)#GPU计算矩阵with tf.device('/gpu:0'):gpu_a = tf.random.normal([n,n])gpu_b = tf.random.normal([n,n])print(gpu_a.device,gpu_b.device)def cpu_run():with tf.device('/cpu:0'):c = tf.matmul(cpu_a,cpu_b)return cdef gpu_run():with tf.device('/cpu:0'):c = tf.matmul(gpu_a,gpu_b)return cnumber=1000print("初次运行:")cpu_time=timeit.timeit(cpu_run,number=number)gpu_time=timeit.timeit(gpu_run,number=number)print("cpu计算时间:",cpu_time)print("Gpu计算时间:",gpu_time)print("再次运行:")cpu_time=timeit.timeit(cpu_run,number=number)gpu_time=timeit.timeit(gpu_run,number=number)print("cpu计算时间:",cpu_time)print("Gpu计算时间:",gpu_time)run()

 可能T4显卡不太好吧...体现不出太大的效果,也可能是GPU在公用或者还没热身。

自动求导:

公式:
f(x)=x^n

微分(导数):
f'(x)=n*x^(n-1)

例:
y=x^2
微分(导数):
dy/dx=2x^(2-1)=2x

x = tf.constant(10.)   # 定义常数变量值
with tf.GradientTape() as tape:   #调用tf底下的求导函数tape.watch([x])   # 使用tape.watch()去观察和跟踪watchy=x**2dy_dx = tape.gradient(y,x)
print(dy_dx)

 运行结果:tf.Tensor(20.0, shape=(), dtype=float32)

 数据预处理 之 统一数组维度

        对拿到的脏数据进行预处理的时候需要进行统一数组维度操作,使用tensorflow.keras.preprocessing.sequence 底下的pad_sequences函数,比如下面有三个不等长的数组,我们需要对数据处理成相同的长度,可以进行左边或者补个数

import numpy as np
import pprint as pp #让打印出来的更加好看
from tensorflow.keras.preprocessing.sequence import pad_sequencescomment1 = [1,2,3,4]
comment2 = [1,2,3,4,5,6,7]
comment3 = [1,2,3,4,5,6,7,8,9,10]x_train = np.array([comment1, comment2, comment3], dtype=object)
print(), pp.pprint(x_train)# 左补0,统一数组长度
x_test = pad_sequences(x_train)
print(), pp.pprint(x_test)# 左补255,统一数组长度
x_test = pad_sequences(x_train, value=255)
print(), pp.pprint(x_test)# 右补0,统一数组长度
x_test = pad_sequences(x_train, padding="post")
print(), pp.pprint(x_test)# 切取数组长度, 只保留后3位
x_test = pad_sequences(x_train, maxlen=3)
print(), pp.pprint(x_test)# 切取数组长度, 只保留前3位
x_test = pad_sequences(x_train, maxlen=3, truncating="post")
print(), pp.pprint(x_test)
array([list([1, 2, 3, 4]), list([1, 2, 3, 4, 5, 6, 7]),list([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])], dtype=object)array([[ 0,  0,  0,  0,  0,  0,  1,  2,  3,  4],[ 0,  0,  0,  1,  2,  3,  4,  5,  6,  7],[ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10]], dtype=int32)array([[255, 255, 255, 255, 255, 255,   1,   2,   3,   4],[255, 255, 255,   1,   2,   3,   4,   5,   6,   7],[  1,   2,   3,   4,   5,   6,   7,   8,   9,  10]], dtype=int32)array([[ 1,  2,  3,  4,  0,  0,  0,  0,  0,  0],[ 1,  2,  3,  4,  5,  6,  7,  0,  0,  0],[ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10]], dtype=int32)array([[ 2,  3,  4],[ 5,  6,  7],[ 8,  9, 10]], dtype=int32)array([[1, 2, 3],[1, 2, 3],[1, 2, 3]], dtype=int32)
(None, None)

 定义变量和常量

tf中变量定义为Variable,常量Tensor(这里懂了吧,pytorch里面都是Tensor,但是tf里面的Tensor代表向量其实也是可变的),要注意的是Variable数组和变量数值之间的加减乘除可以进行广播机制的运算,而且常量和变量之间也是可以相加的。

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.system("cls")import tensorflow as tf################################
# 定义变量
a = tf.Variable(1)
b = tf.Variable(1.)
c = tf.Variable([1.])
d = tf.Variable(1., dtype=tf.float32)print("-" * 40)
print(a)
print(b)
print(c)
print(d)# print(a+b)  # error:类型不匹配
print(b+c)    # 注意这里是Tensor类型
print(b+c[0]) # 注意这里是Tensor类型################################
# 定义Tensor
x1 = tf.constant(1)
x2 = tf.constant(1.)
x3 = tf.constant([1.])
x4 = tf.constant(1, dtype=tf.float32)print("-" * 40)
print(x1)
print(x2)
print(x3)
print(x4)print(x2+x3[0])

运行结果:

----------------------------------------

<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=1> <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=1.0> <tf.Variable 'Variable:0' shape=(1,) dtype=float32, numpy=array([1.], dtype=float32)> <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=1.0> tf.Tensor([2.], shape=(1,), dtype=float32) tf.Tensor(2.0, shape=(), dtype=float32)

----------------------------------------

tf.Tensor(1, shape=(), dtype=int32) tf.Tensor(1.0, shape=(), dtype=float32) tf.Tensor([1.], shape=(1,), dtype=float32) tf.Tensor(1.0, shape=(), dtype=float32) tf.Tensor(2.0, shape=(), dtype=float32)

 训练模型的时候设备变量的设置

使用Variable:

        如果定义整数默认定义在CPU,定义浮点数默认在GPU上,但是咱们在tf2.0上不用去关心他的变量类型,因为2.0进行运算的变量都在GPU上进行运算(前提上本地有GPU).

        使用identity指定变量所定义的设备,在2.0其实不用管了,1.0可能代码得有两个不同设备的版本,但在2.0就不需要在意这个问题了。

################################
# 定义变量后看设备
a = tf.Variable(1)
b = tf.Variable(10.)print("-" * 40)
print("a.device:", a.device, a) # CPU
print("b.device:", b.device, b) # GPU################################
# 定义Tensor后看设备
x1 = tf.constant(100)
x2 = tf.constant(1000.)print("-" * 40)
print("x1.device:", x1.device, x1) # CPU
print("x2.device:", x2.device, x2) # CPU################################
print("-" * 40)# CPU+CPU
ax1 = a + x1
print("ax1.device:", ax1.device, ax1) # GPU# CPU+GPU
bx2 = b + x2
print("bx2.device:", bx2.device, bx2) # GPU################################
# 指定GPU设备定义Tensor
gpu_a = tf.identity(a)
gpu_x1 = tf.identity(x1)print("-" * 40)
print("gpu_a.device:", gpu_a.device, gpu_a)
print("gpu_x1.device:", gpu_x1.device, gpu_x1)

生成随机数据

其实tf和numpy在创建上是大同小异的,除了变量类型不一样。

a = np.ones(12)
print(a)
a = tf.convert_to_tensor(a)#其实没必要转换,直接像下面的方法进行定义。
a = tf.zeros(12)
a = tf.zeros([4,3])
a = tf.zeros([4,6,3])
b = tf.zeros_like(a)
a = tf.ones(12)
a = tf.ones_like(b)
a = tf.fill([3,2], 10.)
a = tf.random.normal([12])
a = tf.random.normal([4,3])
a = tf.random.truncated_normal([3,2])
a = tf.random.uniform([4,3], minval=0, maxval=10)
a = tf.random.uniform([12], minval=0, maxval=10, dtype=tf.int32)
a = tf.range([12], dtype=tf.int32)
b = tf.random.shuffle(a)
print(b)

代码我就不贴了。

交叉熵损失CE和均方误差函数MSE 

假设batch=1

直接看怎么用,以图像分类为例,输出是类别个数,选择最大神经原的下标,然后进行独热编码把它变成[1,0,0,0,...],然后就可以与softmax之后的输出概率值之间做交叉熵损失。

rows = 1
out = tf.nn.softmax(tf.random.uniform([rows,2]),axis=1)
print("out:", out)
print("预测值:", tf.math.argmax(out, axis=1), "\n")y = tf.range(rows)
print("y:", y, "\n")y = tf.one_hot(y, depth=10)
print("y_one_hot:", y, "\n")loss = tf.keras.losses.binary_crossentropy(y,out)
# loss = tf.keras.losses.mse(y, out)
print("row loss", loss, "\n")

假设batch=2

rows = 2
out = tf.random.uniform([rows,1])
print("预测值:", out, "\n")y = tf.constant([1])
print("y:", y, "\n")# y = tf.one_hot(y, depth=1)print("y_one_hot:", y, "\n")loss = tf.keras.losses.mse(y,out)
# loss = tf.keras.losses.mse(y, out)
print("row loss", loss, "\n")loss = tf.reduce_mean(loss)
print("总体损失:", loss, "\n")

总损失就是一个batch的损失求均值。

全连接Dense层

###################################################
# Dense: y=wx+b
rows = 1
net = tf.keras.layers.Dense(1) # 一个隐藏层,一个神经元
net.build((rows, 1)) # (编译)每个训练数据有1个特征
print("net.w:", net.kernel) # 参数个数
print("net.b:", net.bias) # 和Dense数一样

假设有一个特征输出,如果讲bulid参数改成(rows,3),那么神经元个数的w参数输出就变成了(3,1)大小的数据。

维度变换reshape

跟numpy一毛一样不用看了

# 10张彩色图片
a = tf.random.normal([10,28,28,3])
print(a)
print(a.shape) # 形状
print(a.ndim)  # 维度b = tf.reshape(a, [10, 784, 3])
print(b)
print(b.shape) # 形状
print(b.ndim)  # 维度c = tf.reshape(a, [10, -1, 3])
print(c)
print(c.shape) # 形状
print(c.ndim)  # 维度d = tf.reshape(a, [10, 784*3])
print(d)
print(d.shape) # 形状
print(d.ndim)  # 维度e = tf.reshape(a, [10, -1])
print(e)
print(e.shape) # 形状
print(e.ndim)  # 维度

增加或减小维度

a = tf.range([24])
# a = tf.reshape(a, [4,6])
print(a)
print(a.shape)
print(a.ndim)# 增加一个维度,相当于[1,2,3]->[[1,2,3]]
b = tf.expand_dims(a, axis=0)
print(b)
print(b.shape)
print(b.ndim)# 减少维度,相当于[[1,2,3]]->[1,2,3]
c = tf.squeeze(b, axis=0)
print(c)
print(c.shape)
print(c.ndim)

数组合并

真t和numpy一毛一样

####################################################
# 数组合并
# tf.concat
a = tf.zeros([2,4,3])
b = tf.ones([2,4,3])print(a)
print(b)# 0轴合并,4,4,3
c = tf.concat([a,b], axis=0)
print(c)# 1轴合并,2,8,3
c = tf.concat([a,b], axis=1)
print(c)# 2轴合并,2,4,6
c = tf.concat([a,b], axis=2)
print(c)# 扩充一维,例如把多个图片放入一个大数组中 -> 2,2,4,3
c = tf.stack([a,b], axis=0)
print(c)# 降低维数,拆分数组
m, n = tf.unstack(c, axis=0)
print(m)
print(n)

广播机制:

a = tf.constant([1, 2, 3])
print(a)x = 1
print(a + x)b = tf.broadcast_to(a, [3, 3])
print(b)x = 10
print(b * x)

运行结果:

tf.Tensor([1 2 3], shape=(3,), dtype=int32)

tf.Tensor([2 3 4], shape=(3,), dtype=int32)

tf.Tensor( [[1 2 3] [1 2 3] [1 2 3]], shape=(3, 3), dtype=int32)

tf.Tensor( [[10 20 30] [10 20 30] [10 20 30]], shape=(3, 3), dtype=int32)

简单范数运算

def log(prefix="", val=""):print(prefix, val, "\n")# 2范数:平方和开根号
a = tf.fill([1,2], value=2.)
log("a:", a)
b = tf.norm(a) # 计算a的范数
log("a的2范数b:", b)# 计算验证
a = tf.square(a)
log("a的平方:", a)a = tf.reduce_sum(a)
log("a平方后的和:", a)b = tf.sqrt(a)
log("a平方和后开根号:", b)# a = tf.range(10, dtype=tf.float32)

 矩阵转置

#####################################################
# 矩阵转置
a = tf.range([12])
a = tf.reshape(a, [4,3])
print(a)b = tf.transpose(a) # 行列交换
print(b)# 1张4x4像素的彩色图片
a = tf.random.uniform([4,4,3], minval=0, maxval=10, dtype=tf.int32)
print(a)# 指定变换的轴索引
b = tf.transpose(a, perm=[0,2,1])
print(b)# 把刚才的b再变换回来
c = tf.transpose(b, perm=[0,2,1])
print(c)

今天先敲到这里,这里推荐两个TensorFlow学习教程:

        [1]TensorFlow2.0官方教程https://www.tensorflow.org/tutorials/quickstart/beginner?hl=zh-cn

        [2]小马哥

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/210970.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CCKS2023-面向金融领域的主体事件检测-亚军方案分享

赛题分析 大赛地址 https://tianchi.aliyun.com/competition/entrance/532098/introduction?spma2c22.12281925.0.0.52b97137bpVnmh 任务描述 主体事件检测是语言文本分析和金融领域智能应用的重要任务之一&#xff0c;如在金融风控领域往往会对公司主体进行风险事件的检测…

杂散表的阅读

杂散表得阅读 —— 以Marki公司得手册为例 混频杂散&#xff08;Mixing Spurs&#xff09;是指信号经过混频器时&#xff0c;不仅会与本振混频&#xff0c;还会与本振的高次谐波混频&#xff08;对于第二章说的方波本振&#xff0c;信号只与本振的奇次谐波混频因为方波只含有奇…

VSC改造MD编辑器及图床方案分享

VSC改造MD编辑器及图床方案分享 用了那么多md编辑器&#xff0c;到头来还是觉得VSC最好用。这次就来分享一下我的blog文件编辑流吧。 这篇文章包括&#xff1a;VSC下md功能扩展插件推荐、图床方案、blog文章管理方案 VSC插件 Markdown All in One Markdown Image - 粘粘图片…

gitLab创建新项目

1.进入git2.选择创建项目3.勾选生成readme.md文件4.邀请成员

【MATLAB源码-第93期】基于matlab的白鲸优化算法(BWO)和鲸鱼优化算法(WOA)机器人栅格路径规划对比。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 白鲸优化算法&#xff08;BWO&#xff09; 白鲸优化算法是受到白鲸捕食和迁徙行为启发的一种算法。其主要特点和步骤包括&#xff1a; 1. 搜索食物&#xff08;全局搜索&#xff09;&#xff1a;算法模仿白鲸寻找食物的行为。…

流媒体音视频/安防视频云平台/可视化监控平台EasyCVR无法启动且打印panic报错,是什么原因?

国标GB视频监控管理平台/视频集中存储/云存储EasyCVR能在复杂的网络环境中&#xff0c;将分散的各类视频资源进行统一汇聚、整合、集中管理&#xff0c;实现视频资源的鉴权管理、按需调阅、全网分发、智能分析等。AI智能大数据视频分析EasyCVR平台已经广泛应用在工地、工厂、园…

分布式搜索引擎(Elastic Search)+消息队列(RabbitMQ)部署

一、分布式搜索引擎&#xff1a;Elastic Search Elastic Search的目标就是实现搜索。是一款非常强大的开源搜索引擎&#xff0c;可以帮助我们从海量数据中快速找到需要的内容。在数据量少的时候&#xff0c;我们可以通过索引去搜索关系型数据库中的数据&#xff0c;但是如果数…

【C++11】线程库/异常

一&#xff1a;线程库 1.1:线程库(thread) 1.1.1&#xff1a;为什么要有线程库 1.1.2&#xff1a;thread库中的成员函数 1.1.3&#xff1a;线程函数参数 1.2:互斥锁(mutex) 1.2.1&#xff1a;为什么要有互斥锁 1.2.2&#xff1a;C11中的互斥锁 1.3:原子操作(atomic) 1.4:条件变…

Apollo新版本Beta技术沙龙

有幸参加Apollo开发者社区于12月2日举办的Apollo新版本(8.0)的技术沙龙会&#xff0c;地址在首钢园百度Apollo Park。由于去的比较早&#xff0c;先参观了一下这面的一些产品&#xff0c;还有专门的讲解&#xff0c;主要讲了一下百度无人驾驶的发展历程和历代产品。我对下面几个…

Java画爱心

Java画爱心代码&#xff0c;每个人都可以被需要 效果图 源代码 package com.example.test; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java.awt.Image; import java.awt.Toolkit; import javax.swing.JFrame; class Cardioid extend…

Java+Swing+Mysql实现超市管理系统

一、系统介绍 1.开发环境 操作系统&#xff1a;Win10 开发工具 &#xff1a;IDEA2018 JDK版本&#xff1a;jdk1.8 数据库&#xff1a;Mysql8.0 2.技术选型 JavaSwingMysql 3.功能模块 4.系统功能 1.系统登录登出 管理员可以登录、退出系统 2.商品信息管理 管理员可以对商品信息…

超完整的mysql安装配置方法(包含idea和navicat连接mysql,并实现建表)

mysql安装配置方法 1、下载mysql2、解压到指定的安装目录3、配置初始化文件my.ini4、配置用户变量和系统变量5、初始化mysql6、安装mysql服务并启动修改密码7、使用idea连接mysql8、使用Navicat可视化工具连接mysql&#xff0c;并实现新建数据库&#xff0c;新建表 1、下载mysq…

C语言-详解指针

目录 一.内存 1.内存的定义 2.内存的结构图 二.地址 1.什么是地址 2.什么是变量的地址 三.什么是指针 1.指针的定义 四.如何获取数据存储空间的地址 1.&运算符 五.指针变量 1.什么是指针变量&#xff08;一级指针变量&#xff09; 2.指针变量的定义 3…

<JavaEE> 什么是线程安全?产生线程不安全的原因和处理方式

目录 一、线程安全的概念 二、线程不安全经典示例 三、线程不安全的原因和处理方式 3.1 线程的随机调度和抢占式执行 3.2 修改共享数据 3.3 关键代码或指令不是“原子”的 3.4 内存可见性和指令重排序 四、Java标准库自带的线程安全类 一、线程安全的概念 线程安全是指…

Electron+Ts+Vue+Vite桌面应用系列:sqlite增删改查操作篇

文章目录 1️⃣ sqlite应用1.1 sqlite数据结构1.2 初始化数据库1.3 初始化实体类1.4 操作数据类1.5 页面调用 优质资源分享 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/details/134692751 ElectronTsVueVite桌面应用系列 &am…

nacos启动报错 java.lang.RuntimeException: [db-load-error]load jdbc.properties error

以standalone mode sh startup.sh -m standalone 为例子 启动nacos 报错&#xff1a; Caused by: org.springframework.boot.web.server.WebServerException: Unable to start embedded Tomcatat org.springframework.boot.web.embedded.tomcat.TomcatWebServer.initialize(To…

Linux中shell的运行原理

在Linux中&#xff0c;每次输入命令时&#xff0c;前面都会出现一串字母&#xff0c;我们称之为命令行提示符 实际上&#xff0c;命令行提示符是一种外壳程序 外壳程序的概念&#xff1a; 前面我们提到过&#xff0c;在Linux中&#xff0c;一切皆文件&#xff0c;所谓的命令就…

C语言 - 字符函数和字符串函数

系列文章目录 文章目录 系列文章目录前言1. 字符分类函数islower 是能够判断参数部分的 c 是否是⼩写字⺟的。 通过返回值来说明是否是⼩写字⺟&#xff0c;如果是⼩写字⺟就返回⾮0的整数&#xff0c;如果不是⼩写字⺟&#xff0c;则返回0。 2. 字符转换函数3. strlen的使⽤和…

批量AI创作文案的工具,批量AI创作文章的软件

人工智能&#xff08;AI&#xff09;的应用不断拓展&#xff0c;其中批量AI创作逐渐成为许多文本创作者和企业编辑的热门选择。面对海量的文章需求&#xff0c;批量AI创作工具能够高效、快速地生成大量文本内容&#xff0c;从而减轻创作者的工作负担。本文将专心分享批量AI创作…

【C语言:自定义类型(结构体、位段、共用体、枚举)】

文章目录 1.结构体1.1什么是结构体1.2结构体类型声明1.3结构体变量的定义和初始化1.4结构体的访问 2.结构体对齐2.1如何对齐2.2为什么存在内存对齐&#xff1f; 3.结构体实现位段3.1什么是位段3.2位段的内存分配3.3位段的跨平台问题3.4位段的应用3.5位段使用注意事项 4.联合体4…