Leetcod面试经典150题刷题记录——数组 / 字符串篇

数组 / 字符串篇

    • 1. 合并两个有序数组
      • Python3
        • 排序法
        • 双指针法
    • 2. 移除元素
      • Python3
    • 3. 删除有序数组中的重复元素
      • Python3
    • 7. 买卖股票的最佳时机
      • Python3
    • 8. 买卖股票的最佳时机Ⅱ
      • Python3
        • 贪心法
        • 动态规划法
    • 11. H 指数
      • Python3
        • 排序法
        • 计数排序法
        • 二分查找

有个技巧,若想熟悉语言的写法,可以照着其它语言的题解,写目标语言的代码,比如有C/C++的题解,写Python的算法,这样同时可以对比两种语言,并熟悉Python代码中API的使用,并且可以增强代码的迁移能力,语言只是一种实现的工具,不被语言束缚也是一种自由。

1. 合并两个有序数组

题目链接:合并两个有序数组 - leetcode
题目描述:
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

解题思路:
(1) 排序法。将nums2添加至nums1并排序,但这样的做法未利用到nums1与nums2非递减的特性,时间复杂度是排序的时间复杂度 O ( ( m + n ) l o g 2 ( m + n ) ) O((m+n)log_2(m+n)) O((m+n)log2(m+n)),空间复杂度认为是快排的空间复杂度 O ( l o g 2 ( m + n ) ) O(log_2(m+n)) O(log2(m+n))
(2) 双指针法。新建一个数组sorted用来存储,然后将nums1指向新数组的内容,用双指针比较nums1和nums2各元素的大小,存储至sorted数组中

Python3

排序法
class Solution:def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:"""Do not return anything, modify nums1 in-place instead."""nums1[m:] = nums2nums1.sort()
双指针法
class Solution:def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:"""Do not return anything, modify nums1 in-place instead."""p1, p2 = 0,0index_bound1, index_bound2 = m-1,n-1 # 数组下标索引边界,这和长度有区别sorted = []while p1 <= index_bound1 or p2 <= index_bound2:# 1.若有某一数组下标出界,表明该数组已判断完成,应存另一数组的值if p1 > index_bound1:sorted.append(nums2[p2])p2 += 1elif p2 > index_bound2:sorted.append(nums1[p1])p1 += 1# 2.比较两数大小,存更小的,以确保是非递减序列elif (nums1[p1] <= nums2[p2]):sorted.append(nums1[p1])p1 += 1else:sorted.append(nums2[p2])p2 += 1nums1[:] = sorted

2. 移除元素

题目描述:
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
题目归纳:
即要将数值中值等于val的元素全部移除,并且不能使用额外的数组空间

解题思路:
双指针法。left指针从数组起点向右,right指针从数组终点向左,若nums[left]与val相等,就不断的将nums[left]的值与nums[right]的值交换,保证数组在[0,left]的纯洁性。

Python3

class Solution:def removeElement(self, nums: List[int], val: int) -> int:left, right = 0, len(nums) - 1while left <= right:if(nums[left] == val): # swap,将等于val的放到数组后面去nums[left],nums[right] = nums[right],nums[left]right -= 1else:left += 1return left

3. 删除有序数组中的重复元素

题目描述:
给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。
考虑 nums 的唯一元素的数量为 k ,你需要做以下事情确保你的题解可以被通过:
更改数组 nums ,使 nums 的前 k 个元素包含唯一元素,并按照它们最初在 nums 中出现的顺序排列。nums 的其余元素与 nums 的大小不重要。
返回 k 。
题目归纳:
首先分析该有序数组的特点
由于数组有序,且非严格递增
故对于任意 i < j,若有nums[i] = nums[j]
则有任意i <= k <= j,nums[i] = nums[k] = nums[j]
利用上述特点,使用快慢指针进行删除重复元素

解题思路:
快慢指针法。慢指针用来指向第一个(可能)遇到重复元素的位置处,而快指针寻找新元素,当快指针找到新元素,把新元素赋值给慢指针处做替换。

Python3

class Solution:def removeDuplicates(self, nums: List[int]) -> int:slow_p = 1 # 数组若只有一个元素,则下标为0, 这样的数组中不会有重复项for fast_p in range(1, len(nums), 1):if(nums[fast_p-1] != nums[fast_p]): # 快指针找到新元素,利用了任意i <= k <= j,nums[i] = nums[k] = nums[j]特性nums[slow_p] = nums[fast_p]slow_p += 1 # slow_p的增加是有条件的,要找到不相同的元素return slow_p

7. 买卖股票的最佳时机

题目链接:买卖股票的最佳时机 - leetcode
题目描述:
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
题目归纳:
先买后卖是常规操作,即做多。而先将股票卖出,后买入同样数量股票归还于他人,即做空,这道题目不考虑做空,考虑做空也简单,把股票价格数组反转一下,还是先买后卖,就变成“做空”了。这道题目等价于:给定数组,求数组中的两个数字间的最大差值。在实际中,相当于你只能各一次,减法只有一次,解这道题目,代入感不要太强,不要真的以为自己在买股票,然后傻乎乎的去一个个的从左到右遍历,并且假设自己不知道明天的股票价格,你是开了上帝之眼,知道整个股票价格数组的!用爬山类比:相当于只记录从山脚到山顶的高程差

解题思路:
(1) 记录当前遇到的 min_price 即最低股价
(2) 记录 当前收益 = (当前股价 - 最低股价) ,与最大收益做比较并更新最大收益
(3) 返回最大收益

Python3

class Solution:def maxProfit(self, prices: List[int]) -> int:inf = int(1e9) # 10^9min_price = infmax_profit = 0 # 第一天收益为0for price in prices:max_profit = max(price - min_price, max_profit) # 这样可以求得全局的最大收益min_price = min(price, min_price)return max_profit

8. 买卖股票的最佳时机Ⅱ

题目链接:买卖股票的最佳时机Ⅱ - leetcode
题目描述:
给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。返回 你能获得的 最大 利润 。
题目归纳:
与上一题的区别:同一天也可以买和卖,并且可以在多天多次买卖,其它条件与前面那道题一致,只能有一只股票。也等价于:给定数组,可以多次求差值(只能后减前),求数组中的最大 差值总和。用爬山类比:相当于记录从山脚到山顶的高程差之和,即所有上坡高度之和。

解题思路:
(1) 若明天股价大于今天股价,可以卖出。
(2) 只要有股价上涨,就可以卖出。

Python3

贪心法
class Solution:def maxProfit(self, prices: List[int]) -> int:# 贪心解法sum_profit = 0n = len(prices)print(prices[-1]) # 注意python中这样写是没有数组越界的警告的,而是数组的第size-1个元素for i in range(1, n): # (1,n)而不是(0,n)sum_profit += max(0, prices[i] - prices[i-1]) # 只要有股价上涨,就可以卖出。return sum_profit
动态规划法

这题的动态规划算法必须学会,这是解下一步的股票题的基础。

class Solution:def maxProfit(self, prices: List[int]) -> int:# 动态规划解法# 考虑一个数组dp# dp[i][0] 为,当天未持有股票,所获得的最大收益# dp[i][1] 为,当天  持有股票,所获得的最大收益# 那么可以列出转移方程:# dp[i][0] = max( dp[i-1][0], dp[i-1][1] + prices[i] ) # 之所以加上prices[i],是因为今天要卖出这只股票,会获得prices[i]这么多的收益# 同理# dp[i][1] = max( dp[i-1][1], dp[i-1][0] - prices[i]) # 之所以减去prices[i],是因为今天要买入这只股票,会损失prices[i]这么多的收益# 建立dp数组n = len(prices)rows = ncols = 2dp = [ [0 for _ in range(cols)]for _ in range(rows) ]# 赋初值dp[0][0] = 0dp[0][1] = -prices[0]for i in range(1, n):dp[i][0] = max( dp[i-1][0], dp[i-1][1] + prices[i] )dp[i][1] = max( dp[i-1][1], dp[i-1][0] - prices[i] )# 最后一天不能拥有股票,因为还有股票的话肯定是利益受损的return dp[n-1][0]

11. H 指数

题目描述:
给你一个整数数组 citations ,其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h 指数。
根据维基百科上 h 指数的定义:h 代表“高引用次数” ,一名科研人员的 h 指数是指,他(她)至少发表h 篇论文,并且每篇论文至少被引用h 次。如果该 h 有多种可能的值,h 指数是最大的那个。
题目归纳:
H-index Wiki,我想,h 指数的基本思想是:论文发的越多,不一定代表水平越高,而是发的越多,也要引用的越多才行,引用数认为是发表数认为是,即有质有量 h 指数才高,可以看出原始的 h 指数有个缺点,如果论文发的少引用的多,h 指数也不会很高,也就是有质无量的 h 指数低,无质无量无质有量自然就更低了,这里把两个量的量纲统一了,就得到了下面的图。
H-index from wiki

解题思路:
(1) 排序法。将数组citations从高到底排列,h不断增加,直到引用数 h 无法增大,则返回 h 。对应上图,就是寻找到虚线和数据分布的“分界点”,在papers(citations)坐标轴上的值。
(2) 计数排序法。

Python3

排序法

时间复杂度: O ( n l o g 2 n ) O(nlog_{2}{n}) O(nlog2n) n n n为数组citations长度
空间复杂度: O ( l o g 2 n ) O(log_{2}{n}) O(log2n) n n n为数组citations长度

class Solution:def hIndex(self, citations: List[int]) -> int:sorted_citation = sorted(citations, reverse = True)# python里可以用分号在一行中分割语句,曾经python为了阅读的简便性,抛弃了分号,现在又拿回来了,会不会有一天,这些语言来一个大一统,赋值号居然还有:=,=这两种写法,想出:=的人我很好奇他个人的精神状态h = 0; i = 0; n = len(citations)while i < n and sorted_citation[i] > h:h += 1i += 1return h
计数排序法

【排序算法】计数排序 - bilibili
计数排序是一种非比较排序,比较排序的复杂度下限是O(nlogn)已经得到过论文证明。

class Solution:def hIndex(self, citations: List[int]) -> int:# 新建并维护一个数组citation_papers,来记录当前引用次数的论文有多少篇# 对于论文i引用次数citations[i]超过论文发表数len(citations)的情况,将其按总论文发表数len(citations)计算即可,这样排序的数的大小范围就可以降低至[0,n=len(citations)]# 从而计数排序的时间复杂度,就降低至O(n)。现实中,一个学者一辈子能发表的论文数量顶天了也就百来篇,再夸张点,一千篇,不需要考虑n是无穷增长的,这点大小对计数排序是恰到好处的,因为计数排序就适合范围不大的排序。n = len(citations); H_papers = 0 # H_papers: 符合H指数的论文数citation_papers = [0] * (n+1) # 生成计数排序数组,用到了python的扩充操作,此数组下标为citation,数组内容为paper数量# 计算计数排序数组for c in citations:if c >= n:             # 引用次数超过论文发表数,引用次数按发表论文数计算citation_papers[n] += 1else:citation_papers[c] += 1# 倒序遍历for citation in range(n, -1, -1): # (-1, n] step = -1,实际上的下标范围即[0,n]H_papers += citation_papers[citation]if citation <= H_papers:return citationreturn 0
二分查找

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/211223.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux磁盘挂载

一、磁盘查看与分区挂载 查看未挂载的磁盘 sudo fdisk -l对上述未挂载的磁盘进行分区和格式化 sudo fdisk /dev/sdd输入g生成分区表&#xff0c; mklabel gpt (创建分区表) #与上一步重复了&#xff0c;可以省略 mkpart primary 1 -1 p (输出结果) q (离开菜单)分好区之后可…

MySQL-视图

一、&#xff1f;看一个需求 emp表的列信息很多&#xff0c;有些信息是个人重要信息(比如 sal,comm,mgr,hiredate),如果我们希望某个用户只能查询emp表的(empno、ename,job和deptno)信息,有什么办法? 》视图 二、基本概念 视图 视图是一个虚拟表&#xff0c;其内容由查…

网络安全缓冲区溢出实验

实验要求实验步骤函数 f00()函数 f01()函数 f02() 实验要求 C 程序 homework08.c 的主函数如下&#xff1a; int main(int argc, char * argv[]) { init_buf(Lbuffer, LEN);switch(argc) {case 1: f00(); break;case 2: f01(); break;case 3: f02(); break; default: f00(); …

CompletableFuture异步执行

CompletableFuture异步执行 概念 Java 8引入了一个强大的类:CompletableFuture,它在java.util.concurrent包中。CompletableFuture是Future的增强版本,主要用于实现异步编程。 首先,我们要理解什么是Future。Future是Java5引入的一个接口,代表一个异步计算的结果。你可…

华清远见嵌入式学习——C++——作业6

作业要求&#xff1a; 代码&#xff1a; #include <iostream>using namespace std;class Animal { public:virtual void perform() 0;};class Lion:public Animal { private:string foods;string feature; public:Lion(){}Lion(string foods,string feature):foods(foo…

软件设计模式原则(三)单一职责原则

单一职责原则&#xff08;SRP&#xff09;又称单一功能原则。它规定一个类应该只有一个发生变化的原因。所谓职责是指类变化的原因。如果一个类有多于一个的动机被改变&#xff0c;那么这个类就具有多于一个的职责。而单一职责原则就是指一个类或者模块应该有且只有一个改变的原…

【MySQL】聚合函数和分组(查找)

聚合函数分组分组聚合如何显示每个部门的平均工资和最高工资显示每个部门的每种岗位的平均工资和最低工资显示平均工资低于2000的部门和它的平均工资(SMITH员工不参与)where 和 having 的区别 聚合函数 函数说明COUNT([DISTINCT] expr)返回查询到的数据的 数量SUM([DISTINCT] …

三、DVP摄像头调试笔记(图片成像质量微调整,非ISP)

说明&#xff1a;当前调试仅仅用来测试和熟悉部分摄像头寄存器模式 一、图片成像方向控制&#xff0c;基本每个摄像头都会有上下左右翻转寄存器 正向图片 反向图片 二、设置成像数据成各种颜色&#xff0c;&#xff08;黑白/原彩/黄色等等&#xff09; 在寄存器书册描述中…

【SpringCloud篇】Eureka服务的基本配置和操作

文章目录 &#x1f339;简述Eureka&#x1f6f8;搭建Eureka服务⭐操作步骤⭐服务注册⭐服务发现 &#x1f339;简述Eureka Eureka是Netflix开源的一个基于REST的服务治理框架&#xff0c;主要用于实现微服务架构中的服务注册与发现。它由Eureka服务器和Eureka客户端组成&#…

使用NimoShake将数据从AWS DynamoDB迁移至阿里云MongoDB

本文介绍从AWS DynamoDB到阿里云MongoDB的迁移框架。 它概述了以下步骤&#xff1a; 在阿里云上配置云数据库MongoDB版并应用公网终端节点在 AWS EC2 上安装 Nimoshake将AWS EC2访问阿里云MongoDB版列入白名单配置 Nimoshake 并开始迁移过程验证目标数据库上的增量数据 1. 创…

基于人工智能技术《量化投资AI系统》的集群架构设计与实现

乔总&#xff1a; 前些日子你我的共同朋友潘总&#xff0c;推荐您来聊聊将ChatGPT应用于量化投资的合作。在与您及您的团队进行了超过2个多小时的沟通后&#xff0c;恕我直言&#xff0c;不客气地说&#xff0c;感觉您的团队对人工智能技术几乎是空白。为了让您的团队对人工智…

Spring boot命令执行 (CVE-2022-22947)漏洞复现和相关利用工具

Spring boot命令执行 (CVE-2022-22947)漏洞复现和相关利用工具 名称: spring 命令执行 (CVE-2022-22947) 描述: Spring Cloud Gateway是Spring中的一个API网关。其3.1.0及3.0.6版本&#xff08;包含&#xff09;以前存在一处SpEL表达式注入漏洞&#xff0c;当攻击者可以访问A…

八、Lua数组和迭代器

一、Lua数组 数组&#xff0c;就是相同数据类型的元素按一定顺序排列的集合&#xff0c;可以是一维数组和多维数组。 在 Lua 中&#xff0c;数组不是一种特定的数据类型&#xff0c;而是一种用来存储一组值的数据结构。 实际上&#xff0c;Lua 中并没有专门的数组类型&#xf…

逢疫读史引以为鉴,防微杜渐警钟长鸣

世事变幻&#xff0c;皆有定数&#xff1b;生死福祸&#xff0c;必有因由。连日来&#xff0c;“多国又爆发大规模传染病”这个话题&#xff0c;不断地出现在网络空间&#xff0c;令人骇然。为此笔者花了很多时间和精力&#xff0c;查阅了许多相关文献、史料&#xff0c;在此仅…

vuepress-----2、初体验

2、初体验 目标 创建GitHub账号创建Github项目初体验vuepress默认主体的首页 初体验 (opens new window) --- home: true heroImage: /hero.png heroText: Hero 标题 tagline: Hero 副标题 actionText: 快速上手 → actionLink: /zh/guide/ features: - title: 简洁至上deta…

ChatGPT哪些行业需要学习?

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

30、pytest入门内容回顾

整体结构 解读与实操 pytest30讲主要从四个方面由浅入深的进行解读&#xff0c; 开始 讲解了pytest的概述&#xff0c;安装前的准备工作&#xff08;python,pycharm,pytest&#xff09;&#xff0c;运行方式&#xff08;命令行&#xff09;&#xff0c;断言&#xff08;assert…

算法通关村——原来这就是堆

堆结构是一种非常重要的基础数据结构&#xff0c;也是算法的重要内容&#xff0c;很多题目甚至只能用堆来进行&#xff0c;所以我们必须先明确什么类型的题目可以用堆&#xff0c;以及如何使用堆来解决。由于堆的构造和维护过程都非常复杂&#xff0c;因此面试时一般不需要手写…

漫步者开放式耳机怎么样?南卡、漫步者开放式耳机哪个好?

现在开放式耳机的市场越来越混杂&#xff0c;我们作为消费者在挑选的时候&#xff0c;一定要找准需求点才能把踩坑几率降到最低。实在不会挑选的也不要紧&#xff0c;我最近入了2款目前市面最畅销的百元款开放式耳机&#xff1a;南卡OE CC和漫步者comfo fit&#xff0c;亲身上耳…

【Java Web学习笔记】 1 - HTML入门

项目代码 https://github.com/yinhai1114/JavaWeb_LearningCode/tree/main/html 零、网页的组成 HTML是网页内容的载体。内容就是网页制作者放在页面上想要让用户浏览的信息&#xff0c;可以包含文字、图片视频等。 CSS样式是表现。就像网页的外衣。比如&#xff0c;标题字体、…